Question

In: Physics

A toy gun uses a spring with a force constant of 350 N/m to propel a...

A toy gun uses a spring with a force constant of 350 N/m to propel a 15.0 g steel ball. The spring is compressed 8.40 cm and friction is negligible.

a) How much force (in N) is needed to compress the spring? (Assume the gun is aimed in the positive direction. Indicate the direction with the sign of your answer.)

b)To what maximum height (in m) can the ball be shot?

c)At what angles above the horizontal (in degrees) may a child aim to hit a target 3.00 m away at the same height as the gun? (Enter your answers to at least two decimal places.) smaller angle and larger angle?

* I already answered a and b: a) -29.4 N and b) 8.52 m, I just need C *

Solutions

Expert Solution

Let the velocity of bullet when it is fired = u

Mass of bullet = m = 15g =0.015 kg

Compression in spring = x = 8.4 cm = 0.084 m

Force constant of spring = k = 350 N/m

When the toy gun is fired, this potential energy gets converted into kinetic energy of bullet

   ….(1)

Child aims to hit a target 3 m away at the same height as the gun.

So, Range of projectile = 3 m

Formula for range of projectile is given by the formula

where u = initial velocity

θ = angle of projection

g = acceleration due to gravity

substituting values of range and u2 in above formula, we get


Related Solutions

The spring of a toy gun has a force constant of k = 533 N/m and...
The spring of a toy gun has a force constant of k = 533 N/m and negligible mass. The spring is compressed the length of the gun barrel, 7.25 cm, and a 0.168-g ball is placed against the compressed spring. A constant frictional force of 5.45-N acts on the ball as it travels through the barrel. The ball leaves the barrel at the moment that it loses contact with the spring. The toy gun is ‘fired’ at a height of...
In a spring gun system, a spring with a spring force constant 420 N/mN/m  , is compressed...
In a spring gun system, a spring with a spring force constant 420 N/mN/m  , is compressed 0.13 mm . When fired, 80.9 %% of the elastic potential energy stored in the spring is eventually converted into kinetic energy of a 6.10×10−2 kgkg uniform ball that is rolling without slipping at the base of a ramp. The ball continues to roll without slipping up the ramp with 89.6 %% of the kinetic energy at the bottom converted into an increase in...
A spring cannon has a spring constant of 350 N / m and the bullet weighs...
A spring cannon has a spring constant of 350 N / m and the bullet weighs 10 grams. What is the maximum height, measured above the equilibrium position of the spring, that the spring cannon can shoot the ball up to if the maximum compression of the spring is 3.0 cm? (Continuation of the previous question) Before firing, the spring is compressed 2.0 centimeters in relation to the equilibrium position and the firing angle is set to ?? = 41...
The spring (force) constant of HF is 970 N/m (1 N = 1 kg m s2...
The spring (force) constant of HF is 970 N/m (1 N = 1 kg m s2 ). (A) Calculate the fundamental frequency (expressed in units of cm-1 ) and the zero point energy (in energy units, J). (B) Earlier in the term we discussed the relationship between the energy and the position and momentum uncertainties. For the harmonic oscillator case, it would be E ≥ ((Δp) 2 / 2µ) + (1 / 2) µω2 (Δx) 2 (Equation 1) The ground...
A spring with force constant k = 175 N/m is attached to the ground. On top...
A spring with force constant k = 175 N/m is attached to the ground. On top of the spring a 1.30 kg metal pan is attached. The combination could be used as a scale, but we are going to do something more interesting. We place a metal ball with mass 0.250 kg on the tray and then the tray is pushed down 0.150 m below its equilibrium point and released from rest (take this as t = 0). a) At...
A spring that has a force constant of 1050 N/m is mounted vertically on the ground....
A spring that has a force constant of 1050 N/m is mounted vertically on the ground. A block of mass 1.40 kg is dropped from rest from height of 1.40 m above the free end of the spring. By what distance does the spring compress?
A spring-loaded toy gun shoots straight up, and the toy rocket (m = 250g) reaches a...
A spring-loaded toy gun shoots straight up, and the toy rocket (m = 250g) reaches a maximum height hmax of 15.0 m when the spring is compressed 7.0 cm from its equilibrium position. What is the value of the spring constant, ks? (neglect friction with air and gun and assume an ideal spring)
A 70.0-g object connected to a spring with a force constant of 40.0 N/m oscillates with...
A 70.0-g object connected to a spring with a force constant of 40.0 N/m oscillates with an amplitude of 7.00 cm on a frictionless, horizontal surface. (a) Find the total energy of the system. mJ (b) Find the speed of the object when its position is 1.10 cm. (Let 0 cm be the position of equilibrium.) m/s (c) Find the kinetic energy when its position is 3.50cm. mJ (d) Find the potential energy when its position is 3.50cm.
A horizontal spring attached to a wall has a force constant of k = 770 N/m....
A horizontal spring attached to a wall has a force constant of k = 770 N/m. A block of mass m = 2.00 kg is attached to the spring and rests on a frictionless, horizontal surface as in the figure below. (a) The block is pulled to a position xi = 5.80 cm from equilibrium and released. Find the potential energy stored in the spring when the block is 5.80 cm from equilibrium. J (b) Find the speed of the...
A 35.0-g object connected to a spring with a force constant of 40.0 N/m oscillates with...
A 35.0-g object connected to a spring with a force constant of 40.0 N/m oscillates with an amplitude of 6.00 cm on a frictionless, horizontal surface. (a) Find the total energy of the system. mJ (b) Find the speed of the object when its position is 1.15 cm. (Let 0 cm be the position of equilibrium.) m/s (c) Find the kinetic energy when its position is 2.50 cm. mJ (d) Find the potential energy when its position is 2.50 cm....
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT