Question

In: Advanced Math

Hey. Given C = {z | z = z(t) = 10*e^(it), 0 <= t <= 2...

Hey.
Given C = {z | z = z(t) = 10*e^(it), 0 <= t <= 2 pi}.

How do I solve the following two integrals. Is there a way to do it with residues?

a) f(z) = (cos(z) -1)/ z^3
b) f(z) = (sin(pi*z))/(z^3-1)

Thank you!

Solutions

Expert Solution


Related Solutions

Problem 2 Find max, min, point of infliction for a. f(t)=c (e^(-bt)-e^at ) for t≥0 where...
Problem 2 Find max, min, point of infliction for a. f(t)=c (e^(-bt)-e^at ) for t≥0 where a>b>0, c>0 b. f(x)=2x^3+3x^2-12x-7 for -3≤x≤2 c. f(x)=(x+3)/(x^2+7) for -∞≤x≤+∞
y'' - y = e^(-t) - (2)(t)(e^(-t)) y(0)= 1 y'(0)= 2 Use Laplace Transforms to solve....
y'' - y = e^(-t) - (2)(t)(e^(-t)) y(0)= 1 y'(0)= 2 Use Laplace Transforms to solve. Sketch the solution or use matlab to show the graph.
Suppose that e(t) is a piecewise defined function e (t) = 0 if 0 ≤ t...
Suppose that e(t) is a piecewise defined function e (t) = 0 if 0 ≤ t < 3 and e(t) = 1 if 3 ≤ t Solve y’’+ 9y = e(t) y(0) = 1 y’(0) = 3
u(t−c) =uc(t) ={0, 0≤t<c,1, t≥c.} USE Laplace Transform to solve y′′+ 2y′+ 2y=δ(t−5)e^tcost, y(0) = 1,...
u(t−c) =uc(t) ={0, 0≤t<c,1, t≥c.} USE Laplace Transform to solve y′′+ 2y′+ 2y=δ(t−5)e^tcost, y(0) = 1, y′(0) = 2, whereδ(t)is the Dirac delta. Does the solution show a resonance?
What is the integral e^z/Z-1 dz where C is the circle|z| = 2?
What is the integral e^z/Z-1 dz where C is the circle|z| = 2?
A particle is moving according to the given data v(t)=t^2 - sqrt(t), x(0) = 0, 0...
A particle is moving according to the given data v(t)=t^2 - sqrt(t), x(0) = 0, 0 ≤ t ≤ 4. • Find x(t), the position of the particle at time t. • For what values of t is the particle moving to the left? To the right? • Find the displacement of the particle. • Find the total distance covered by the particle.
Given the two lines (x, y, z) = (4, -3, 5) + t(2, 0, -3) (x,...
Given the two lines (x, y, z) = (4, -3, 5) + t(2, 0, -3) (x, y, z) = (4, -3, 5) + s(5, 1, -1) a) determine a vector equation for the plane that combines the two lines b) parametric equations of the plane that contains the two lines c) Cartesian equation of the plane that contains the two lines
t^2 y'' − 4ty' + 6y = t^4*e^t , t > 0. Use variation of parameters...
t^2 y'' − 4ty' + 6y = t^4*e^t , t > 0. Use variation of parameters to find a particular solution given that y1 = t^2 and y2 = t^3 are a fundamental set of solutions to the corresponding homogeneous equation
(1) (2) (3) DI C DI C DI C $0 $4 $0 $65 $0 $2 10...
(1) (2) (3) DI C DI C DI C $0 $4 $0 $65 $0 $2 10 11 80 125 20 20 20 18 160 185 40 38 30 25 240 245 60 56 40 32 320 305 80 74 50 39 400 365 100 92 Refer to the given consumption schedules. DI signifies disposable income and C represents consumption expenditures. All figures are in billions of dollars. At an income level of $40 billion, the average propensity to consume is...
The temperature at a point (x,y,z) is given by T(x,y,z)=200e^(-x^2-y^2/4-z^2/9) , where T is measured in...
The temperature at a point (x,y,z) is given by T(x,y,z)=200e^(-x^2-y^2/4-z^2/9) , where T is measured in degrees Celsius and x,y, and z in meters. just try to keep track of what needs to be a unit vector. a) Find the rate of change of the temperature at the point (1, 1, -1) in the direction toward the point (-5, -4, -3). b) In which direction (unit vector) does the temperature increase the fastest at (1, 1, -1)? c) What is...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT