Question

In: Advanced Math

u(t−c) =uc(t) ={0, 0≤t<c,1, t≥c.} USE Laplace Transform to solve y′′+ 2y′+ 2y=δ(t−5)e^tcost, y(0) = 1,...

u(t−c) =uc(t) ={0, 0≤t<c,1, t≥c.}

USE Laplace Transform to solve

y′′+ 2y′+ 2y=δ(t−5)e^tcost, y(0) = 1, y′(0) = 2, whereδ(t)is the Dirac delta. Does the solution show a

resonance?

Solutions

Expert Solution

Given the

Use Laplace transform to solve


Related Solutions

Solve the initial–value problem by using the Laplace transform. y′′ +2y′ +10y = δ(t−π), y(0) =...
Solve the initial–value problem by using the Laplace transform. y′′ +2y′ +10y = δ(t−π), y(0) = 0, y′(0) = 4
solve using the laplace transform y''-2y'+y=e^-1 , y(0)=0 , y'(0)=1
solve using the laplace transform y''-2y'+y=e^-1 , y(0)=0 , y'(0)=1
Use the Laplace transform to solve the problem with initial values y''-2y'+2y=cost y(0)=1 y'(0)=0
Use the Laplace transform to solve the problem with initial values y''-2y'+2y=cost y(0)=1 y'(0)=0
Use the Laplace transform to solve the given initial-value problem. y'' + y = δ(t −...
Use the Laplace transform to solve the given initial-value problem. y'' + y = δ(t − 6π) + δ(t − 8π), y(0) = 1, y'(0) = 0
Use the Laplace transform to solve the problem with initial values y''+2y'-2y=0 y(0)=2 y'(0)=0
Use the Laplace transform to solve the problem with initial values y''+2y'-2y=0 y(0)=2 y'(0)=0
Use the Laplace transform to solve the following initial value problem: y′′−3y′−28y=δ(t−7) y(0)=0, y′(0)=0 y(t)=
Use the Laplace transform to solve the following initial value problem: y′′−3y′−28y=δ(t−7) y(0)=0, y′(0)=0 y(t)=
Solve the differential equation by Laplace transform y^(,,) (t)-2y^' (t)-3y(t)=sint   where y^' (0)=0 ,y=(0)=0
Solve the differential equation by Laplace transform y^(,,) (t)-2y^' (t)-3y(t)=sint   where y^' (0)=0 ,y=(0)=0
Solve the differential equation using the Laplace transform.   y''' + 3y''+2y' = 100e-t , y(0) =...
Solve the differential equation using the Laplace transform.   y''' + 3y''+2y' = 100e-t , y(0) = 0, y'(0) = 0, y''(0) = 0
Solve using Laplace Transform ty'' + 2(t-1)y'-2y = 0 y(0)=0, y'(0)=0, Y(s) = C/(s^2+2s)^2 (C is...
Solve using Laplace Transform ty'' + 2(t-1)y'-2y = 0 y(0)=0, y'(0)=0, Y(s) = C/(s^2+2s)^2 (C is arbitrary)
y'' - y = e^(-t) - (2)(t)(e^(-t)) y(0)= 1 y'(0)= 2 Use Laplace Transforms to solve....
y'' - y = e^(-t) - (2)(t)(e^(-t)) y(0)= 1 y'(0)= 2 Use Laplace Transforms to solve. Sketch the solution or use matlab to show the graph.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT