Question

In: Math

The temperature at a point (x,y,z) is given by T(x,y,z)=200e^(-x^2-y^2/4-z^2/9) , where T is measured in...

The temperature at a point (x,y,z) is given by T(x,y,z)=200e^(-x^2-y^2/4-z^2/9) , where T is measured in degrees Celsius and x,y, and z in meters. just try to keep track of what needs to be a unit vector. a) Find the rate of change of the temperature at the point (1, 1, -1) in the direction toward the point (-5, -4, -3). b) In which direction (unit vector) does the temperature increase the fastest at (1, 1, -1)? c) What is the maximum rate of increase of T at (1, 1, -1)?

Solutions

Expert Solution


Related Solutions

(1 point) The temperature at a point (x,y,z) is given by ?(?,?,?)=200?−?2−?2/4−?2/9, where ? is measured...
(1 point) The temperature at a point (x,y,z) is given by ?(?,?,?)=200?−?2−?2/4−?2/9, where ? is measured in degrees Celsius and x,y, and z in meters. There are lots of places to make silly errors in this problem; just try to keep track of what needs to be a unit vector. Find the rate of change of the temperature at the point (1, 1, 1) in the direction toward the point (-1, -1, -1). In which direction (unit vector) does the...
The temperature at a point (x, y, z) is given by T(x, y, z) = 100e−x2...
The temperature at a point (x, y, z) is given by T(x, y, z) = 100e−x2 − 3y2 − 7z2 where T is measured in °C and x, y, z in meters. (a) Find the rate of change of temperature at the point P(2, −1, 2) in the direction towards the point (4, −4, 4). answer in °C/m (b) In which direction does the temperature increase fastest at P? (c) Find the maximum rate of increase at P.
The temperature at a point (x, y, z) is given by T(x, y, z) = 300e−x2...
The temperature at a point (x, y, z) is given by T(x, y, z) = 300e−x2 − 3y2 − 9z2 where T is measured in °C and x, y, z in meters. (a) Find the rate of change of temperature at the point P(4, −1, 3) in the direction towards the point (6, −2, 6) (b) In which direction does the temperature increase fastest at P? (c) Find the maximum rate of increase at P.
The temperature T at (x,y,z) in the 3D space is given by T(x,y,z) = ln(1+x2y2+z2). a)...
The temperature T at (x,y,z) in the 3D space is given by T(x,y,z) = ln(1+x2y2+z2). a) Find rate of change of T at the point P(1,-1,-1) in the direction of Q(2,0,0)? b) In which direction from P(1,-1,-1) does the temperature T increase most rapidly? c) What is the maximum rate of change of T at P(1,-1,-1)?
The temperature T at a point (x,y,z) in space is inversely proportional to the square of...
The temperature T at a point (x,y,z) in space is inversely proportional to the square of the distance from (x,y,z) to the origin. It is known that T(0,0,1) = 500. a. [2] Compute T(2,0,0). b. [3] Find the rate of change of T at the point (2,3,3) in the direction of the point (3,1,1). c. [3] What is the maximal rate of change of T at the point (2,3,3)?
Given the two lines (x, y, z) = (4, -3, 5) + t(2, 0, -3) (x,...
Given the two lines (x, y, z) = (4, -3, 5) + t(2, 0, -3) (x, y, z) = (4, -3, 5) + s(5, 1, -1) a) determine a vector equation for the plane that combines the two lines b) parametric equations of the plane that contains the two lines c) Cartesian equation of the plane that contains the two lines
Let S be the cone z = 4 − ( x^2 + y^2)^(1/2) where z ≥...
Let S be the cone z = 4 − ( x^2 + y^2)^(1/2) where z ≥ 0, oriented with downward pointing unit normal vectors. The image below contains S. The grey plane is the xy-plane. Let F~ (x, y, z) = <− z , x − y , x + y >. Use Stokes’ Theorem to evaluate Z Z S ∇ × F~ · dS~.
Find the coordinates of the point (x, y, z) on the plane z = 4 x...
Find the coordinates of the point (x, y, z) on the plane z = 4 x + 1 y + 4 which is closest to the origin.
Given function f(x,y,z)=x^(2)+2*y^(2)+z^(2), subject to two constraints x+y+z=6 and x-2*y+z=0. find the extreme value of f(x,y,z)...
Given function f(x,y,z)=x^(2)+2*y^(2)+z^(2), subject to two constraints x+y+z=6 and x-2*y+z=0. find the extreme value of f(x,y,z) and determine whether it is maximum of minimum.
Given the following coordinates: (f, 9), (z, 2), (t, 4), (x, 8), (b, 1), (m, 7)....
Given the following coordinates: (f, 9), (z, 2), (t, 4), (x, 8), (b, 1), (m, 7). Sort the coordinates in Python (in ascending order) by comparing the first part of the coordinates. You may use the sort() function in Python.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT