Question

In: Advanced Math

Problem 6. Let Pd (2, C) denote the vector space of C-polynomials in two variables, of...

Problem 6. Let Pd (2, C) denote the vector space of C-polynomials in two variables, of degree ≤ d.

Define a linear map S : P2(2, C) → P2(C) by S(p) := p(z, z) (where z is a variable for the polynomials in P2(C)).

(a) Prove that S is surjective and that Skew2(2, C) ⊂ ker(S).

(b) Give an example of a polynomial in ker(S) \ Skew2(2, C). Hence write down a basis for ker(S).

Solutions

Expert Solution

(a) In one of the previous part we have seen that a basis of is . Also, we know that a basis of is , and a basis of is . Now, by definition of the linear map , we have

Therefore, the image of contains the basis of , showing that the image is itself. Hence, is surjective.

Since and , we conclude that the basis of the subspace is contained in the kernel. But then, the subspace itself must be contained in the kernel, because kernel is a subspace and hence is closed under linear span. Thus, .

(b) Since and , by rank-nullity theorem we get

But gives , and we already know that and is a basis for . Thus, if then a basis for would be .

Note that if then ; thus, satisfies , and a basis of is .


Related Solutions

Let P denote the vector space of all polynomials with real coefficients and Pn be the...
Let P denote the vector space of all polynomials with real coefficients and Pn be the set of all polynomials in p with degree <= n. a) Show that Pn is a vector subspace of P. b) Show that {1,x,x2,...,xn} is a basis for Pn.
Let PN denote the vector space of all polynomials of degree N or less, with real...
Let PN denote the vector space of all polynomials of degree N or less, with real coefficients. Let the linear transformation: T: P3 --> P1 be the second derivative. Is T onto? Explain. Is T one-to-one? What is the Kernel of T? Find the standard matrix A for the linear transformation T. Let B= {x+1 , x-1 , x2+x , x3+x2 } be a basis for P3 ; and F={ x+2 , x-3 } be a basis for P1 ....
Let P2 be the vector space of all polynomials of degree less than or equal to...
Let P2 be the vector space of all polynomials of degree less than or equal to 2. (i) Show that {x + 1, x2 + x, x − 1} is a basis for P2. (ii) Define a transformation L from P2 into P2 by: L(f) = (xf)'    . In other words, L acts on the polynomial f(x) by first multiplying the function by x, then differentiating. The result is another polynomial in P2. Prove that L is a linear transformation....
Let V be the 3-dimensional vector space of all polynomials of order less than or equal...
Let V be the 3-dimensional vector space of all polynomials of order less than or equal to 2 with real coefficients. (a) Show that the function B: V ×V →R given by B(f,g) = f(−1)g(−1) + f(0)g(0) + f(1)g(1) is an inner product and write out its Gram matrix with respect to the basis (1,t,t2). DO NOT COPY YOUR SOLUTION FROM OTHER SOLUTIONS
1. Show that the set of all polynomials of deg=2 is not a vector space over...
1. Show that the set of all polynomials of deg=2 is not a vector space over reals. can this be fixed, can we have a set of polynomials that is a vector space over reals? 2. Show that the set of 2x2 matrices with m_22 = 1 is not a vector space over reals. 3. Show that the set of infinitely-differentiable real functions is a a vector space under pointwise function addition, and pointwise scalar multiplication as defined in class,...
Let V be the vector space of 2 × 2 real matrices and let P2 be...
Let V be the vector space of 2 × 2 real matrices and let P2 be the vector space of polynomials of degree less than or equal to 2. Write down a linear transformation T : V ? P2 with rank 2. You do not need to prove that the function you write down is a linear transformation, but you may want to check this yourself. You do, however, need to prove that your transformation has rank 2.
Consider the vector space P2 of all polynomials of degree less than or equal to 2...
Consider the vector space P2 of all polynomials of degree less than or equal to 2 i.e. P = p(x) = ax + bx + c | a,b,c €.R Determine whether each of the parts a) and b) defines a subspace in P2 ? Explain your answer. a) ( 10 pts. ) p(0) + p(1) = 1 b) ( 10 pts.) p(1) = − p(−1)
S_3 is the vector space of polynomials degree <= 3. V is a subspace of poly's...
S_3 is the vector space of polynomials degree <= 3. V is a subspace of poly's s(t) so that s(0) = s(1) = 0. The inner product for two poly. s(t) and f(t) is def.: (s,f) = ([integral from 0 to 1] s(t)f(t)dt). I would like guidance finding (1) an orthogonal basis for V and (2) the projection for s(t) = 1 - t + 2t^2. Thank you!
3. We let ??(?) denote the set of all polynomials of degree at most n with...
3. We let ??(?) denote the set of all polynomials of degree at most n with real coefficients. Let ? = {? + ??3 |?, ? ??? ???? ???????}. Prove that T is a vector space using standard addition and scalar multiplication of polynomials in ?3(?).
Verify all axioms that show that the set of second degree polynomials is a vector space....
Verify all axioms that show that the set of second degree polynomials is a vector space. What is the Rank? P2 = {p(x)P | p(x) = ax^2 + bx + c where a,b,c E R}
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT