Question

In: Mechanical Engineering

Air at 25°C flows over a 10-mm-diameter sphere with a velocity of 20 m/s, while the...

Air at 25°C flows over a 10-mm-diameter sphere with a velocity of 20 m/s, while the surface of the sphere is maintained at 75°C. What is the rate of heat transfer from the sphere? q = ___ W ?

Please provide correct final answer for guaranteed thumbs up rating !

Solutions

Expert Solution


Related Solutions

Air at 20°C (1 atm) is flowing over a 0.025-m diameter sphere with a velocity of...
Air at 20°C (1 atm) is flowing over a 0.025-m diameter sphere with a velocity of 3.5 m/s. If the surface temperature of the sphere is constant at 80°C, determine the Reynolds number corresponding to the sphere, its average drag co-efficient, and the heat transfer rate from the sphere. The properties of air (1 atm) at the free stream temperature T∞ = 20°C, ρ = 1.204 kg/m3, k = 0.02514 W/m∙K, μ = 1.825 × 10−5 kg/m∙s, and Pr = 0.7309. At the surface temperature Ts= 80°C: μs =...
Air at 20°C and a velocity of 8 m/s flows over the 4-m length of a...
Air at 20°C and a velocity of 8 m/s flows over the 4-m length of a 4-m wide single surface of a square plate whose temperature is 80°C. (For properties of air, use k = 0.02735 W/m·K, Pr = 0.7228, ν = 1.798 x 10-5 m2 /s ) Given the above information, do the calculations to answer the two MC questions below. Please clearly show/discuss your solution method and calculations. A. __________The rate of heat transfer, Q̇ , from this...
Air at 20°C and 1 atm flows over a spherical object at 1 m/s. The sphere...
Air at 20°C and 1 atm flows over a spherical object at 1 m/s. The sphere has a diameter of 10mm and its initial temperature is 134°C. If the density, specific heat, and conductivity of the sphere are 7832 kg/m”, 549 J/kg.K, and 49.2 W/m.K, respectively, calculate the temperature at the center of the sphere after 100 seconds.
Air at 25°C is flowing over 400°C hot iron ball with a velocity of 10 m/s....
Air at 25°C is flowing over 400°C hot iron ball with a velocity of 10 m/s. The diameter of the iron ball is 10 cm diameter and (p =7874 kg/m3 and cP = 450 J/kg.K). After a while the surface temperature of the ball drops to 300°C. Determine the average rate of heat transfer from the ball. How long will it take to drop from 400°C to 300°C. Calculate the drag force. (The surface of the ball is smooth.)
A jet of water 50 mm in diameter with a velocity of 20 m/s strikes a...
A jet of water 50 mm in diameter with a velocity of 20 m/s strikes a flat plate inclined at an angle of 30° to the axis of the jet. Determine (i) the normal force exerted on the plate when the plate is stationary (ii) the normal force exerted on the plate when the plate is moving at 5 m/s in the direction of the jet (iii) the work-done on the plate and the efficiency for case (ii).
Air flows through a 0.25-m-diameter duct. At the inlet the velocity is 300 m/s, and the...
Air flows through a 0.25-m-diameter duct. At the inlet the velocity is 300 m/s, and the stagnation temperature is 90°C. If the Mach number at the exit is 0.3, determine the direction and the rate of heat transfer. For the same conditions at the inlet, determine the amount of heat that must be transferred to the system if the flow is to be sonic at the exit of the duct.
Air flows over a 4 meter long flat plate at a velocity of 8 m/s. Using...
Air flows over a 4 meter long flat plate at a velocity of 8 m/s. Using a spreadsheet, calculate the boundary layer thickness and wall shear stress at 0.1 meter intervals along the plate. Do not plot the wall shear stress at x=0. Use a transition Reynolds number of 5 x 10^5 . (You will need to calculate Rex at each location to determine if the laminar or turbulent correlations should be used.) Generate a spreadsheet table that includes columns...
Cold air at temperature of 10 C and velocity of 3 m/s is moving parallel to...
Cold air at temperature of 10 C and velocity of 3 m/s is moving parallel to a flat plate with the length of 6 m and surface temperature of 75 C. A) Find the transition location on the plate and the heat loss from the plate. B) Repeat part (A) for water at the same velocity and temperature. The flat plate is made from copper.
Cold air at temperature of 10 C and velocity of 3 m/s is moving parallel to...
Cold air at temperature of 10 C and velocity of 3 m/s is moving parallel to a flat plate with the length of 6 m and surface temperature of 75 C. A) Find the transition location on the plate and the heat loss from the plate. B) Repeat part (A) for water at the same velocity and temperature. The flat plate is made from copper.
The mean velocity in an artery of internal diameter 2.5 mm is 0.25 m/s. Assuming that...
The mean velocity in an artery of internal diameter 2.5 mm is 0.25 m/s. Assuming that blood has a viscosity of 0.004 Pa.s and a density of 1000 kg m−3. a) Determine: i. whether the flow is laminar or turbulent ii. the volume flow rate through the artery b) Assume that the diameter of this blood vessel above is doubled, what would happen to the total volumetric flow rate? Explain your response. c) What would happen in terms of type...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT