Question

In: Advanced Math

Find dy/dx and d2 y/dx2 . For which values of t is the curve concave upward? 13. x = et , y = te-t

Find dy/dx and d2 y/dx. For which values of t is the curve concave upward?

13. x = et , y = te-t

Solutions

Expert Solution

x=et;y=tet x=e^{t} ; y=t e^{-t}

Aim: To find the values of tt, for which d2ydx2>0\frac{d^{2} y}{d x^{2}}>0

Formulae used:

dydx=dy/dtdx/dt\frac{d y}{d x}=\frac{d y / d t}{d x / d t}

d2ydx2=ddx(dydx)=ddxdtdt(dydx)=ddtdtdx(dydx)d2ydx2=ddt(dydx)dx/dt \begin{aligned} &\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)=\frac{d}{d x} \cdot \frac{d t}{d t}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)=\frac{d}{d t} \cdot \frac{d t}{d x}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right) \\ &\Rightarrow \\ &\frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)}{\mathrm{dx} / \mathrm{dt}} \end{aligned}

dydt=ddt(tet)dydt=(1t)etdxdt=et \begin{aligned} &\frac{\mathrm{dy}}{\mathrm{dt}}=\frac{d}{d t}\left(t \mathrm{e}^{-\mathrm{t}}\right) \\ &\frac{\mathrm{dy}}{\mathrm{dt}}=(1-t) \mathrm{e}^{-\mathrm{t}} \\ &\frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{e}^{\mathrm{t}} \end{aligned}

Hence, Put in (2)

dydx=(1t)etetdydx=(1t)e2t \begin{gathered} \frac{d y}{d x}=\frac{(1-t) e^{-t}}{e^{t}} \\ \frac{d y}{d x}=(1-t) e^{-2 t} \end{gathered}

Now use (4), (6) in (3) for evaluating d2ydx2\frac{d^{2} y}{d x^{2}}

d2ydx2=ddt((1t)e2t)etd2ydx2=e2tddt(1t)+(1t)ddt(e2t)etd2ydx2=e2t(1)+(1t)(2e2t)etd2ydx2=(2t3)e3t \begin{aligned} &\frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left((1-\mathrm{t}) \mathrm{e}^{-2 \mathrm{t}}\right)}{e^{t}} \\ &\frac{d^{2} y}{d x^{2}}=\frac{\mathrm{e}^{-2 \mathrm{t}} \frac{d}{d t}(1-\mathrm{t})+(1-\mathrm{t}) \frac{d}{d t}\left(\mathrm{e}^{-2 \mathrm{t}}\right)}{e^{t}} \\ &\frac{d^{2} y}{d x^{2}}=\frac{\mathrm{e}^{-2 \mathrm{t}}(-1)+(1-\mathrm{t})\left(-2 \mathrm{e}^{-2 \mathrm{t}}\right)}{e^{t}} \\ &\frac{d^{2} y}{d x^{2}}=\frac{(2 \mathrm{t}-3)}{e^{3 t}} \end{aligned}

For d2ydx2>0\frac{d^{2} y}{d x^{2}}>0

(2t3)e3t>0 \frac{(2 t-3)}{e^{3 t}}>0

Since,

e3t>0 Always.  e^{3 t}>0 \text { Always. }

Hence,

(2t3)>0 \begin{aligned} &(2 t-3)>0 \\ &\Rightarrow \end{aligned}

When,

t>32,d2ydx2>0 \mathrm{t}>\frac{3}{2}, \frac{d^{2} y}{d x^{2}}>0

Hence,

t(32,)t \in\left(\frac{3}{2}, \infty\right) for curve to be concave upward.


t(32,)t \in\left(\frac{3}{2}, \infty\right) for the curve to be concave upward.

Related Solutions

At a relative maximum of a curve y(x), the slope dy/dx is zero. Use the following data to estimate the values of x and y that co
At a relative maximum of a curve y(x), the slope dy/dx is zero. Use the following data to estimate the values of x and y that correspond to a maximum point.
Given the differential equation (ax+b)2d2y/dx2+(ax+b)dy/dx+y=Q(x) show that the equations ax+b=et and t=ln(ax+b) reduces this equation to...
Given the differential equation (ax+b)2d2y/dx2+(ax+b)dy/dx+y=Q(x) show that the equations ax+b=et and t=ln(ax+b) reduces this equation to a linear equation with constant coefficients hence solve (1+x)2d2y/dx2+(1+x)dy /dx+ y=(2x+3)(2x+4)
dy/dx + y/x \ x3y2
dy/dx + y/x \ x3y2
dx dt =ax+by dy dt =−x − y, 2. As the values of a and b...
dx dt =ax+by dy dt =−x − y, 2. As the values of a and b are changed so that the point (a,b) moves from one region to another, the type of the linear system changes, that is, a bifurcation occurs. Which of these bifurcations is important for the long-term behavior of solutions? Which of these bifurcations corresponds to a dramatic change in the phase plane or the x(t)and y(t)-graphs?
Find dy/dx by implicit differentiation: cos(x+y)=y^3 sin x
Find dy/dx by implicit differentiation: cos(x+y)=y^3 sin x
dy/dx+(y/2x)=(x/(y^3))
dy/dx+(y/2x)=(x/(y^3))
Find the general solution of the differential equation (x + 2y) (dx-dy) = dx + dy.
Find the general solution of the differential equation (x + 2y) (dx-dy) = dx + dy.
find the differential equation of dy/dx = y+y^3
find the differential equation of dy/dx = y+y^3
1). Find the dervatives dy/dx and d^2/dx^2 , and evaluate them at t = 2. x...
1). Find the dervatives dy/dx and d^2/dx^2 , and evaluate them at t = 2. x = t^2 , y= t ln t 2) Find the arc length of the curve on the given interval. x = ln t , y = t + 1 , 1 < or equal to t < or equal to 2 3) Find the area of region bounded by the polar curve on the given interval. r = tan theta , pi/6 < or...
differential equation y'=dy/dx = -(3xey+2y)/ (x2ey+x). find the solution
differential equation y'=dy/dx = -(3xey+2y)/ (x2ey+x). find the solution
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT