x=et;y=te−t
Aim: To find the values of t, for which dx2d2y>0
Formulae used:
dxdy=dx/dtdy/dt
dx2d2y=dxd(dxdy)=dxd⋅dtdt(dxdy)=dtd⋅dxdt(dxdy)⇒dx2d2y=dx/dtdtd(dxdy)
dtdy=dtd(te−t)dtdy=(1−t)e−tdtdx=et
Hence, Put in (2)
dxdy=et(1−t)e−tdxdy=(1−t)e−2t
Now use (4), (6) in (3) for evaluating dx2d2y
dx2d2y=etdtd((1−t)e−2t)dx2d2y=ete−2tdtd(1−t)+(1−t)dtd(e−2t)dx2d2y=ete−2t(−1)+(1−t)(−2e−2t)dx2d2y=e3t(2t−3)
For dx2d2y>0
e3t(2t−3)>0
Since,
e3t>0 Always.
Hence,
(2t−3)>0⇒
When,
t>23,dx2d2y>0
Hence,
t∈(23,∞) for curve to be concave upward.
t∈(23,∞) for the curve to be concave upward.