Question

In: Statistics and Probability

Let X1, ..., Xn be a random sample from U(0, 3). Recall that this means fXi...

Let X1, ..., Xn be a random sample from U(0, 3). Recall that this means fXi (xi) = 1 3 , 0 < xi < 3, i = 1, ..., n, and that all Xi are mutually independent. Let X(1) ≤ X(2) ≤ ... ≤ X(n) be the order statistics of the random sample. Denote Y1 = X(1).

• Derive FXi (xi).

• Find FY1 (y) = P(Y1 ≤ y). Hint: Use the complement rule of probability. That is, P(Y1 ≤ y) = 1 − P(Y1 > y).

• Show that fY1 (y) = n 3 ∗ (1 − y 3 ) n−1 , 0 < y < 3.

• Show that E(Y1) = 3 (n+1) .

• Compute V ar(Y1), utilizing fact that E(Y 2 1 ) = 18 (n+1)(n+2)

• Compute P(Y1 ≤ 1).

• Assume n = 3. Denote Y2 = X(2), the median. Describe what you would do to find fY2 (y).

Solutions

Expert Solution


Related Solutions

Let X1,X2,...,Xn be a random sample from a uniform distribution on the interval (0,a). Recall that...
Let X1,X2,...,Xn be a random sample from a uniform distribution on the interval (0,a). Recall that the maximum likelihood estimator (MLE) of a is ˆ a = max(Xi). a) Let Y = max(Xi). Use the fact that Y ≤ y if and only if each Xi ≤ y to derive the cumulative distribution function of Y. b) Find the probability density function of Y from cdf. c) Use the obtained pdf to show that MLE for a (ˆ a =...
Let x = (x1,...,xn) ∼ N(0,In) be a MVN random vector in Rn. (a) Let U...
Let x = (x1,...,xn) ∼ N(0,In) be a MVN random vector in Rn. (a) Let U ∈ Rn×n be an orthogonal matrix (UTU = UUT = In) and nd the distribution of UTx. Let y = (y1,...,yn) ∼ N(0,Σ) be a MVN random vector in Rn. Let Σ = UΛUT be the spectral decomposition of Σ. (b) Someone claims that the diagonal elements of Λ are nonnegative. Is that true? (c) Let z = UTy and nd the distribution of...
2. Let X1, . . . , Xn be a random sample from the distribution with...
2. Let X1, . . . , Xn be a random sample from the distribution with pdf given by fX(x;β) = β 1(x ≥ 1). xβ+1 (a) Show that T = ni=1 log Xi is a sufficient statistic for β. Hint: Use n1n1n=exp log=exp −logxi .i=1 xi i=1 xi i=1 (b) Find the pdf of Y = logX, where X ∼ fX(x;β). (c) Find the distribution of T . Hint: Identify the distribution of Y and use mgfs. (d) Find...
: Let X1, X2, . . . , Xn be a random sample from the normal...
: Let X1, X2, . . . , Xn be a random sample from the normal distribution N(µ, 25). To test the hypothesis H0 : µ = 40 against H1 : µne40, let us define the three critical regions: C1 = {x¯ : ¯x ≥ c1}, C2 = {x¯ : ¯x ≤ c2}, and C3 = {x¯ : |x¯ − 40| ≥ c3}. (a) If n = 12, find the values of c1, c2, c3 such that the size of...
. Let X1, X2, . . . , Xn be a random sample from a normal...
. Let X1, X2, . . . , Xn be a random sample from a normal population with mean zero but unknown variance σ 2 . (a) Find a minimum-variance unbiased estimator (MVUE) of σ 2 . Explain why this is a MVUE. (b) Find the distribution and the variance of the MVUE of σ 2 and prove the consistency of this estimator. (c) Give a formula of a 100(1 − α)% confidence interval for σ 2 constructed using the...
Let X1, . . . , Xn be a random sample from a uniform distribution on...
Let X1, . . . , Xn be a random sample from a uniform distribution on the interval [a, b] (i) Find the moments estimators of a and b. (ii) Find the MLEs of a and b.
Let X1,…, Xn be a sample of iid N(0, ?) random variables with Θ=(0, ∞). Determine...
Let X1,…, Xn be a sample of iid N(0, ?) random variables with Θ=(0, ∞). Determine a) the MLE ? of ?. b) E(? ̂). c) the asymptotic variance of the MLE of ?. d) the MLE of SD(Xi ) = √ ?.
Let X1,X2, . . . , Xn be a random sample from the uniform distribution with...
Let X1,X2, . . . , Xn be a random sample from the uniform distribution with pdf f(x; θ1, θ2) = 1/(2θ2), θ1 − θ2 < x < θ1 + θ2, where −∞ < θ1 < ∞ and θ2 > 0, and the pdf is equal to zero elsewhere. (a) Show that Y1 = min(Xi) and Yn = max(Xi), the joint sufficient statistics for θ1 and θ2, are complete. (b) Find the MVUEs of θ1 and θ2.
Let X1, X2, . . . , Xn be a random sample of size n from...
Let X1, X2, . . . , Xn be a random sample of size n from a Poisson distribution with unknown mean µ. It is desired to test the following hypotheses H0 : µ = µ0         versus     H1 : µ not equal to µ0 where µ0 > 0 is a given constant. Derive the likelihood ratio test statistic
Let X1,..., Xn be an i.i.d. sample from a geometric distribution with parameter p. U =...
Let X1,..., Xn be an i.i.d. sample from a geometric distribution with parameter p. U = ( 1, if X1 = 1, 0, if X1 > 1) find a sufficient statistic T for p. find E(U|T)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT