Question

In: Statistics and Probability

Let X1,X2,...,Xn be a random sample from a uniform distribution on the interval (0,a). Recall that...

Let X1,X2,...,Xn be a random sample from a uniform distribution on the interval (0,a). Recall that the maximum likelihood estimator (MLE) of a is ˆ a = max(Xi).
a) Let Y = max(Xi). Use the fact that Y ≤ y if and only if each Xi ≤ y to derive the cumulative distribution function of Y.
b) Find the probability density function of Y from cdf.
c) Use the obtained pdf to show that MLE for a (ˆ a = max(Xi)) is biased.
d) Say I would like to consider another estimator for a, I will call it ˆ b = 2 ¯ X. Is it unbiased estimator of a (show)? How you can explain someone without calculations why ˆ b = 2 ¯ X is a reasonable estimator of a?
e) Based on the result in (c), I will propose to use unbiased estimator for a instead of ˆ a = max(Xi), say ˆ c = n+1 n max(Xi). Given that the relative efficiency of any two unbiased estimators ˆ b,ˆ c is the ratio of their variances
V ar(ˆ b) V ar(ˆ c)
,
explain which of these two unbiased estimators is more efficient. You can obtain the V ar(ˆ c) = V ar(n+1 n max(Xi)) from V ar(ˆ a) = Var(Y ). The variance of the Y = max(Xi) is
Var(Y ) =
n/( (n + 1)^2(n + 2))*a^2

Solutions

Expert Solution


Related Solutions

Let X1,X2, . . . , Xn be a random sample from the uniform distribution with...
Let X1,X2, . . . , Xn be a random sample from the uniform distribution with pdf f(x; θ1, θ2) = 1/(2θ2), θ1 − θ2 < x < θ1 + θ2, where −∞ < θ1 < ∞ and θ2 > 0, and the pdf is equal to zero elsewhere. (a) Show that Y1 = min(Xi) and Yn = max(Xi), the joint sufficient statistics for θ1 and θ2, are complete. (b) Find the MVUEs of θ1 and θ2.
Let X1,X2,...Xn be a random sample of size n form a uniform distribution on the interval...
Let X1,X2,...Xn be a random sample of size n form a uniform distribution on the interval [θ1,θ2]. Let Y = min (X1,X2,...,Xn). (a) Find the density function for Y. (Hint: find the cdf and then differentiate.) (b) Compute the expectation of Y. (c) Suppose θ1= 0. Use part (b) to give an unbiased estimator for θ2.
2. Let X1, ..., Xn be a random sample from a uniform distribution on the interval...
2. Let X1, ..., Xn be a random sample from a uniform distribution on the interval (0, θ) where θ > 0 is a parameter. The prior distribution of the parameter has the pdf f(t) = βαβ/t^(β−1) for α < t < ∞ and zero elsewhere, where α > 0, β > 0. Find the Bayes estimator for θ. Describe the usefulness and the importance of Bayesian estimation. We are assuming that theta = t, but we are unsure if...
Let X1, . . . , Xn be a random sample from a uniform distribution on...
Let X1, . . . , Xn be a random sample from a uniform distribution on the interval [a, b] (i) Find the moments estimators of a and b. (ii) Find the MLEs of a and b.
Suppose that X1,X2,...,Xn form a random sample from a uniform distribution on the interval [θ1,θ2], where...
Suppose that X1,X2,...,Xn form a random sample from a uniform distribution on the interval [θ1,θ2], where (−∞ < θ1 < θ2 < ∞). Find MME for both θ1 and θ2.
Let X1, X2, . . . , Xn represent a random sample from a Rayleigh distribution...
Let X1, X2, . . . , Xn represent a random sample from a Rayleigh distribution with pdf f(x; θ) = (x/θ) * e^x^2/(2θ) for x > 0 (a) It can be shown that E(X2 P ) = 2θ. Use this fact to construct an unbiased estimator of θ based on n i=1 X2 i . (b) Estimate θ from the following n = 10 observations on vibratory stress of a turbine blade under specified conditions: 16.88 10.23 4.59 6.66...
Let X1, X2, ..., Xn be a random sample of size from a distribution with probability...
Let X1, X2, ..., Xn be a random sample of size from a distribution with probability density function f(x) = λxλ−1 , 0 < x < 1, λ > 0 a) Get the method of moments estimator of λ. Calculate the estimate when x1 = 0.1, x2 = 0.2, x3 = 0.3. b) Get the maximum likelihood estimator of λ. Calculate the estimate when x1 = 0.1, x2 = 0.2, x3 = 0.3.
. Let X1, X2, ..., Xn be a random sample of size 75 from a distribution...
. Let X1, X2, ..., Xn be a random sample of size 75 from a distribution whose probability distribution function is given by f(x; θ) = ( 1 for 0 < x < 1, 0 otherwise. Use the central limit theorem to approximate P(0.45 < X < 0.55)
: Let X1, X2, . . . , Xn be a random sample from the normal...
: Let X1, X2, . . . , Xn be a random sample from the normal distribution N(µ, 25). To test the hypothesis H0 : µ = 40 against H1 : µne40, let us define the three critical regions: C1 = {x¯ : ¯x ≥ c1}, C2 = {x¯ : ¯x ≤ c2}, and C3 = {x¯ : |x¯ − 40| ≥ c3}. (a) If n = 12, find the values of c1, c2, c3 such that the size of...
. Let X1, X2, . . . , Xn be a random sample from a normal...
. Let X1, X2, . . . , Xn be a random sample from a normal population with mean zero but unknown variance σ 2 . (a) Find a minimum-variance unbiased estimator (MVUE) of σ 2 . Explain why this is a MVUE. (b) Find the distribution and the variance of the MVUE of σ 2 and prove the consistency of this estimator. (c) Give a formula of a 100(1 − α)% confidence interval for σ 2 constructed using the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT