Question

In: Chemistry

Under standard conditions, Consider the following standard reduction potentials, Ni2+(aq) + 2 e- → Ni(s) E°...

Under standard conditions, Consider the following standard reduction potentials,

Ni2+(aq) + 2 e- → Ni(s) E° = -0.26 V I2(s) + 2 e- → 2 I-(aq) E° = +0.54 V Under standard conditions,

a)Ni2+(aq) is a stronger oxidizing agent than I2(s) and I-(aq) is a stronger reducing agent than Ni(s).

b)I2(s) is a stronger oxidizing agent than Ni2+(aq) and Ni(s) is a stronger reducing agent than I-(aq).

c)I-(aq) is a stronger oxidizing agent than Ni(s) and I2(s) is a stronger reducing agent than Ni2+(aq).

d)Ni(s) is a stronger oxidizing agent than I-(aq) and Ni2+(aq) is a stronger reducing agent than I2(s).

Solutions

Expert Solution


Related Solutions

Part A Calculate the equilibrium constant at 25 ∘C for the reaction Ni(s)+2Ag+(aq)→Ni2+(aq)+2Ag(s), if Ni2+(aq)+2e−→Ni(s), E∘...
Part A Calculate the equilibrium constant at 25 ∘C for the reaction Ni(s)+2Ag+(aq)→Ni2+(aq)+2Ag(s), if Ni2+(aq)+2e−→Ni(s), E∘ = -0.26 V, Al+(aq)+e−→Al(s), E∘ = 0.80 V Express your answer using one significant figure. Part B Calculate the equilibrium constant at 25 ∘C for the reaction Hg2+2(aq)→Hg(l)+Hg2+(aq) See Appendix D for standard reduction potentials. Express your answer using one significant figure.
Given the following standard reduction potentials: Pb2+ (aq) +2e- ---> Pb (s) E= -.126V PbSO4(s) +...
Given the following standard reduction potentials: Pb2+ (aq) +2e- ---> Pb (s) E= -.126V PbSO4(s) + 2e- ---> Pb(s) + SO42- (aq) E= -.356V Determine the Ksp for PbSO4(s) at 25 degrees C
For the following reaction: Ni2+(aq) + Co(s) ⇌ Ni(s) + Co2+(aq) a) Calculate E0 (E^0) b)...
For the following reaction: Ni2+(aq) + Co(s) ⇌ Ni(s) + Co2+(aq) a) Calculate E0 (E^0) b) Calculate G0 (delta G^0) c)Calculate K d) If you start with 10.0 g of Ni and 10.0 g of Co in 100.0 mL solution (containing 1.0 M solution of CoCl2 and 0.0000100 M solution of NiCl2 ) which way the reaction will move toward in order to reach equilibrium? e) Calculate the G (delta G) for the reaction in part d. f)Calculate the equilibrium...
Calculate ΔG° for the following reaction as written Ni2+ (aq) + Sn (s) → Ni (s)...
Calculate ΔG° for the following reaction as written Ni2+ (aq) + Sn (s) → Ni (s) + Sn2+ (aq) given the following reduction half-reactions and standard reduction potentials. Sn2+ (aq) + 2 e- → Sn (s)      E° = -0.15V Ni2+ (aq) + 2 e- → Ni (s)      E° = -0.25V
Consider the following half reactions at 298 K Ni2+ + 2 e- → Ni Eo =...
Consider the following half reactions at 298 K Ni2+ + 2 e- → Ni Eo = -0.231 V Pb2+ + 2 e- → Pb Eo = -0.133 V A galvanice cell based on these half reactions is set up under standard conditions where each solution is 1.00 L and each electrode weighs exactly 100.0 g. How much will the Pb electrode weigh when the nonstandard potential of the cell is 0.09296 V?
Half-reaction E° (V) Hg2+(aq) + 2e- -----> Hg(l) 0.855V Ni2+(aq) + 2e- -----> Ni(s) -0.250V Zn2+(aq)...
Half-reaction E° (V) Hg2+(aq) + 2e- -----> Hg(l) 0.855V Ni2+(aq) + 2e- -----> Ni(s) -0.250V Zn2+(aq) + 2e- ----->  Zn(s) -0.763V (1) The weakest oxidizing agent is: ___   enter formula (2) The strongest reducing agent is: ___ (3) The strongest oxidizing agent is:___ (4) The weakest reducing agent is: ___ (5) Will Zn(s) reduce Hg2+(aq) to Hg(l)? _____(yes)(no) (6) Which species can be oxidized by Ni2+(aq)? ___ If none, leave box blank.
Reduction half-reaction E∘ (V) Ag+(aq)+e−→Ag(s) 0.80 Cu2+(aq)+2e−→Cu(s) 0.34 Sn4+(aq)+4e−→Sn(s) 0.15 2H+(aq)+2e−→H2(g) 0 Ni2+(aq)+2e−→Ni(s) −0.26 Fe2+(aq)+2e−→Fe(s) −0.45...
Reduction half-reaction E∘ (V) Ag+(aq)+e−→Ag(s) 0.80 Cu2+(aq)+2e−→Cu(s) 0.34 Sn4+(aq)+4e−→Sn(s) 0.15 2H+(aq)+2e−→H2(g) 0 Ni2+(aq)+2e−→Ni(s) −0.26 Fe2+(aq)+2e−→Fe(s) −0.45 Zn2+(aq)+2e−→Zn(s) −0.76 Al3+(aq)+3e−→Al(s) −1.66 Mg2+(aq)+2e−→Mg(s) −2.37 1) Use the table of standard reduction potentials given above to calculate the equilibrium constant at standard temperature (25 ∘C) for the following reaction: Fe(s)+Ni2+(aq)→Fe2+(aq)+Ni(s) 2) Calculate the standard cell potential (E∘) for the reaction X(s)+Y+(aq)→X+(aq)+Y(s) if K = 3.80×10−4. Express your answer to three significant figures and include the appropriate units.
A voltaic cell is assembled under standard conditions based on the following reaction : Ni(s) +...
A voltaic cell is assembled under standard conditions based on the following reaction : Ni(s) + 2 Ag+(aq) → Ni+2(aq) + 2 Ag(s) Indicate which statements, if any, about this voltaic cell are true by checking the box in front of each true statment. - The voltaic cell will always produce a positive potential. If the [Ni2+] is doubled while [Ag+] remains standard, the intial potential produced by the voltaic cell will double. If the [Ag+] is doubled while [Ni+2]...
1. Using a table of standard reduction potentials, standard conditions are assumed. (a) Arrange the following...
1. Using a table of standard reduction potentials, standard conditions are assumed. (a) Arrange the following chemical species: Zn(s), Cl-(aq), Cu(s), K(s), and H2(g) in order of their ease of oxidation, from easiest to oxidize to hardest to oxidize. (b) Arrange the following chemical species: H+(aq), I2(s), Na+(aq), Ag+(aq), and H2O(l) in order of their ease of reduction, from easiest to reduce to hardest to reduce. 2. Which of the following reactions is/are product favored? Zn(s) + I2(s) ? Zn+2...
Given: Pb2+(aq)+2e–⇌Pb(s);E°=–0.13 Mg2+(aq)+2e–⇌Mg(s);E°=–2.38V Ag+(aq)+e–⇌Ag(s);E°=0.80V 2H+(aq)+2e–⇌ H2(g);E°=0.00V Under standard-state conditions, which of the following species is the...
Given: Pb2+(aq)+2e–⇌Pb(s);E°=–0.13 Mg2+(aq)+2e–⇌Mg(s);E°=–2.38V Ag+(aq)+e–⇌Ag(s);E°=0.80V 2H+(aq)+2e–⇌ H2(g);E°=0.00V Under standard-state conditions, which of the following species is the best oxidizing agent? a. H b.Mg2+ c. Ag+ d. Pb e. Ag
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT