In: Physics
Consider a rock that is thrown off a bridge of height 68 m at an angle ? = 22
a) at max height Vy = 0
so , using Vy = Vyo - gt
=> 0 = 12 sin22 - 9.8t
=> t = 12sin22 / 9.8 = 0.458 = 0.46 s (approx)
***************************************...
b) using Vy^2 = Vyo^2 - 2gh u get :
0 = (12 sin22)^2 - 2 (9.8) h
solving for h u get h = (12 sin22)^2 / 2(9.8) = 1.03 m
adding that to 22m ( the bridge's height) u get :
h max = 68 + 1.03 = 69.03 m
***************************************...
c) when the rock lands then h = - 68 m
so - 68 = 12sin22 t - 0.5(9.8) t^2
=> -68 = 4.49 t - 4.9 t^2
=> 4.9 t^2 - 4.49 t - 68 = 0
t = [4.49 + sqrt (4.49^2 + 4(4.9)(68))] / 2(4.9) = 4.211 s
***************************************...
d) Vx remains consant , so we use Vx = x / t
=> x = Vx t = 12 cos22 x 4.211 = 46.85 m away from the bridge
***************************************...
e) Vx = 12 cos 22 = 11.12 m/s
now find Vy :
Vy = 12sin22 - 9.8 (4.211) = - 36.77 m/s
so V = sqrt(11.12^2 + 36.77^2) = 38.41 m/s
angle = arctan (-36.77/ 11.12) = - 73.17 degrees