Question

In: Physics

Consider n equal positively charged particles each of magnitude Q/n placed symmetrically around a circle of...

Consider n equal positively charged particles each of magnitude Q/n placed symmetrically around a circle of radius a. (a) Calculate the magnitude of the electric field at a point a distance x from the center of the circle and on the line passing through the center and perpendicular to the plane of the circle. (Use any variable or symbol stated above along with the following as necessary: ke.) E = (b) Now consider a ring of radius a that carries a uniformly distributed positive total charge Q. Recall the calculation of the electric field at point a point a distance x from the center of the ring and on the line passing through the center and perpendicular to the plane of the ring. Explain why the result in part (a) is identical to the result for the ring.

Solutions

Expert Solution

Here we apply Coulomb's law and electric field superposition principle.


Related Solutions

1a) Two identical positively charged particles experience electric forces of magnitude 209 N when they are...
1a) Two identical positively charged particles experience electric forces of magnitude 209 N when they are separated by 4 cm. Calculate the charge on each particle. b) Two electrons and a proton are placed on corners of a square with sides 25 cm. The proton is opposite the empty corner. What is the magnitude of the electric force on the proton? c) Two positive charges Q1 = +4.1 x 10-9 C and Q2 = +1.7 x 10-9 C are separated...
The magnitude of the electric force between two positively charged particles separated by a distance of 3m is 90N.
The magnitude of the electric force between two positively charged particles separated by a distance of 3m is 90N. At this separation, the electric potential energy of the two-charge systemGroup of answer choices810J.270J.90J.30J.10J.
Four equally charged particles with charge q are placed at the corners of a square with...
Four equally charged particles with charge q are placed at the corners of a square with side length L, as shown in the figure below. A fifth charged particle with charge Q is placed at the center of the square so that the entire system of charges is in static equilibrium. What are the magnitude and sign of the charge Q? (Use any variable or symbol stated above as necessary.) magnitude Q =
At a certain moment in time, two identical, positively charged particles are flying horizontally toward each...
At a certain moment in time, two identical, positively charged particles are flying horizontally toward each other. Let the xx-axis be the axis along which the particles are moving, and let the origin lie directly between both particles. Let the yy-axis be oriented pointing vertically up and the zz-axis point directly out from the origin. 1) Which combination of options below are the best combination of corrections that you might make to your friend's diagram? [Enter your answer as a...
Consider the situation of two particles which have equal but opposite charges, +Q and -Q. The...
Consider the situation of two particles which have equal but opposite charges, +Q and -Q. The particles have identical mass. Discuss the following situations in terms of their motion and the work done on them by the relevant field. Where relevant, also provide a short discussion of the implications of these effects on the properties of the charged particles. If necessary, include diagrams to illuminate your solution. (a) For the positive charge, the charge is stationary, and it is placed...
Three charged particles are placed at each of three corners of an equilateral triangle whose sides...
Three charged particles are placed at each of three corners of an equilateral triangle whose sides are of length 2.1 cm . Two of the particles have a negative charge: q1 = -8.0 nC and q2 = -16.0 nC . The remaining particle has a positive charge, q3 = 8.0 nC . What is the net electric force acting on particle 3 due to particle 1 and particle 2? A) Find the net force ΣF⃗ 3 acting on particle 3...
(20%) Problem 3:   Four point charges of equal magnitude Q = 35 nC are placed on...
(20%) Problem 3:   Four point charges of equal magnitude Q = 35 nC are placed on the corners of a rectangle of sides D1 = 18 cm and D2 = 7 cm. The charges on the left side of the rectangle are positive while the charges on the right side of the rectangle are negative. Refer to the figure.   14% Part (b) Enter an expression for the horizontal component of the net force acting on the charge located at the...
Consider the following situation: Three particles +3q, +q, and -2q are placed on a line in...
Consider the following situation: Three particles +3q, +q, and -2q are placed on a line in that order. The middle charge, the +q, is a distance d from the other two charges. a) Conceptually comment on what the net electric force, magnitude and direction, on the middle particle due to the other two will be. b) Calculate the net electric force, magnitude and direction, on the middle particle due to the other two. c) Let q = 25 uC and...
Two charged particles attract each other with a force of magnitude F acting on each. If the charge of one is doubled and the
Two charged particles attract each other with a force of magnitude F acting on each. If the charge of one is doubled and the distance separating the particles is also doubled, the force acting on each of the two particles has magnitude(a) F/2(b) F/4(c) F(d) 2F(e) 4F(f) None of the above. 
In a synchrotron, charged particles are accelerated as they travel around in circles; in a linear...
In a synchrotron, charged particles are accelerated as they travel around in circles; in a linear accelerator they move in a straight line. What are some of the advantages and disadvantages of each?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT