Question

In: Physics

Consider the situation of two particles which have equal but opposite charges, +Q and -Q. The...

Consider the situation of two particles which have equal but opposite charges, +Q and -Q. The particles have identical mass. Discuss the following situations in terms of their motion and the work done on them by the relevant field. Where relevant, also provide a short discussion of the implications of these effects on the properties of the charged particles. If necessary, include diagrams to illuminate your solution.

(a) For the positive charge, the charge is stationary, and it is placed in a uniform electric field directed to the right (the +x-direction).

(b) For the positive charge, the charge is moving upwards (the +y-direction), and it is placed in a uniform electric field directed to the right (the +x-direction).

(c) For the negative charge, the charge is initially stationary and it is placed in a uniform magnetic field directed to the right (the +x-direction).

(d) For the positive charge, the charge is moving upwards (in the +y-direction) at constant velocity, and it is placed in a uniform magnetic field directed to the right (the +x-direction).

Solutions

Expert Solution


Related Solutions

Two parallel conducting plates have equal and opposite charges. Consider the area of conducting place is...
Two parallel conducting plates have equal and opposite charges. Consider the area of conducting place is 2.5 cm^2 and the capacitor is filled with 1.8 m thick dielectric material which has  K=3.60  dielectric constant. The resultant electric field in the dielectric is 1.20×106 V/m. a-Find the magnitude of the charge density σ on the conducting plate. b-Calculate the magnitude of the charge density σ1 on the surfaces of the dielectric. c-Determine the total electric-field energy U stored in the capacitor.
Two charges of opposite sign and equal magnitude Q = 2.0 C are held 2.0 m...
Two charges of opposite sign and equal magnitude Q = 2.0 C are held 2.0 m apart. Determine the magnitude and direction of the electric field at the point P.
Set up 4 different configurations of charges: two opposite charges, two lines of opposite charges, one...
Set up 4 different configurations of charges: two opposite charges, two lines of opposite charges, one cluster of charges and a line of charges, and one configuration of your choice. For each configuration do the following: a) Sketch on a separate piece of paper the configuration. Use the whole page. b) Sketch out at least 10 different equipotential lines by using the voltage probe. (label them) c) Sketch out at least 10 different electric field lines. (crossing at right angles...
Two particles approach each other with equal and opposite speed v. The mass of one particle...
Two particles approach each other with equal and opposite speed v. The mass of one particle is m, and the mass of the other particle is nm, where n is just a unitless number. Snapshots of the system before, during, and after the elastic collision are shown above. After the collision the first particle moves in the exact opposite direction with speed 2.40v, and the speed of the second particle is unknown. What is the value of n?
Consider the following situation: Three particles +3q, +q, and -2q are placed on a line in...
Consider the following situation: Three particles +3q, +q, and -2q are placed on a line in that order. The middle charge, the +q, is a distance d from the other two charges. a) Conceptually comment on what the net electric force, magnitude and direction, on the middle particle due to the other two will be. b) Calculate the net electric force, magnitude and direction, on the middle particle due to the other two. c) Let q = 25 uC and...
Coulomb's law for the magnitude of the force F between two particles with charges Q and...
Coulomb's law for the magnitude of the force F between two particles with charges Q and Q′ separated by a distance d is |F|=K|QQ′|d2, where K=14πϵ0, and ϵ0=8.854×10−12C2/(N⋅m2) is the permittivity of free space. Consider two point charges located on the x axis: one charge, q1 = -18.0 nC , is located at x1 = -1.680 m ; the second charge, q2 = 39.5 nC , is at the origin (x = 0). What is (Fnet3)x(Fnet3)x, the x-component of the...
The electric field midway between two equal but opposite point charges is 651 N/C, and the...
The electric field midway between two equal but opposite point charges is 651 N/C, and the distance between the charges is 15.6 cm. What is the magnitude of the charge on each? First significant figure of answer: 200. pC Answer to 3 significant figures. (Recall: The metric prefix 'pico' (p) means 10-12)
Two charges of equal magnitude and opposite sign form a dipole. Let q1 = 4 nC...
Two charges of equal magnitude and opposite sign form a dipole. Let q1 = 4 nC and q2 = -­ 4 nC, and the charges are located on the y axis at y = 1.0 mm and y = ­-1.0 mm, respectively A second dipole comprised of q​3 = -­ 4 nC located at (0.002,0.001,0)m and q​2 =­ -4 nC located at (0.002,­0.001,0)m is added to the dipole in #1. d. What is the electric field of the two dipole...
The electric field midway between two equal but opposite point charges is 567 N/C , and...
The electric field midway between two equal but opposite point charges is 567 N/C , and the distance between the charges is 16.0 cm. a)What is the magnitude of the charge on each?
In the figure, which best represents the field lines due to two point charges with opposite charges?
In the figure, which best represents the field lines due to two point charges with opposite charges?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT