In: Advanced Math
(1) For each of the following statements, write its negation. Then prove or disprove the original statement.
(b) ∃x ∈ R, ∀y ∈ R, ∃z ∈ R, x2 + y2 + z2 ≥ 1.
(c) ∀y ∈ N, ∃x ∈ N, y = 2x + 1.
(d) x ∈ R ⇒ x2 ≥ 0.
(e) x ∈ [0, 1] ⇒ x > 2x − 1.
(f) For all real numbers x and y, x > y ⇔ x2 > y2