Question

In: Computer Science

Design an FIR filter using the fixed window-based method. Use the following high pass filter requirements:...

Design an FIR filter using the fixed window-based method. Use the following high pass filter requirements:

δp = 0.2 dB

δs = − 30 dB

fs = 3000 Hz

f p = 5000 Hz

The sampling frequency is 10000 Hz

Select the optimal fixed window type for the calculations. Present the number of coefficients and the coefficient values of the impulse response of the specified filter

Solutions

Expert Solution


Related Solutions

Design a LP FIR filter to meet the following specifications using the window method. Use a...
Design a LP FIR filter to meet the following specifications using the window method. Use a Blackman window. Fs = 25 kHz Fc = 5.0 kHz (3 dB down) Attenuation = 80 dB at 7 kHz Give all the relevant plots (impulse, frequency responses) and the performance of the final filter. Compare this filter to one designed using the optimal method .
Design a LP FIR filter to meet the following specifications using the window method. Use a...
Design a LP FIR filter to meet the following specifications using the window method. Use a Blackman window. Fs = 25 kHz Fc = 5.0 kHz (3 dB down) Attenuation = 80 dB at 7 kHz Give all the relevant plots (impulse, frequency responses) and the performance of the final filter. Compare this filter to one designed using the optimal method. (Please use MATLAB to give all the answers)
Write a report 3-4 pages in DSP Digital FIR filter design Analysis {Low Pass Filter(LPF) ,High...
Write a report 3-4 pages in DSP Digital FIR filter design Analysis {Low Pass Filter(LPF) ,High Pass Filter(HPF), Band Pass Filter (BPF), Band Stop Filter (BSF)} Design 1-way of design and system pools evaluation
Q1: Design a 9th order low-pass filter with cut-off ?? /2 using the Hanning window. a)...
Q1: Design a 9th order low-pass filter with cut-off ?? /2 using the Hanning window. a) Plot its frequency response. b) Express the Input/ Output relation. c) let ??[??]{ 0    ??or ??=0,1,2…..,10 {1 ??or ??=11,12,…..30 Calculate ??=????. Plot and comment on the shape of y. Q2: Design a 9th order high-pass filter with cut-off ??/ 4 using the Hanning window. a) Plot the frequency response. b) Express the Input/ Output relation. c) let ??[??]={ 0    ??or ??=0,1,2…..,10 {1...
Design a 9th order low-pass filter with cut-off ??/ 2 using the Hanning window. a) Plot...
Design a 9th order low-pass filter with cut-off ??/ 2 using the Hanning window. a) Plot its frequency response. b) Express the Input/ Output relation. c) let ??[??] = { 0           ?????? ?? = 0,1,2…..,10 1    , ?????? ?? = 11,12,…..30        Calculate ?? = ?? ? ?. Plot and comment on the shape of y.
Design an active high pass filter with a high frequency gain of 5 and a cutoff...
Design an active high pass filter with a high frequency gain of 5 and a cutoff frequency of 2kHz. Use a 0.1 uF capacitor in your design.
Code in Matlab for a low pass filter and a high pass filter. Each filter must...
Code in Matlab for a low pass filter and a high pass filter. Each filter must show the frequency response (magnitude and phase) in graphs properly labelled.
a high pass rc filter can be changed to a low pass filter by
a high pass rc filter can be changed to a low pass filter by
Design a linear phase, minimum-length, band-pass FIR digital filter in MATLAB to meet the specifications listed...
Design a linear phase, minimum-length, band-pass FIR digital filter in MATLAB to meet the specifications listed below. Use Rectangular Windowing (MATLAB function: fir1) pass-band frequencies: f_p1 = 0.35, f_p2 = 0.65 stop-band frequencies: f_s1 = 0.10, f_s2 = 0.80 pass-band tolerance: d_p <= 0.1 stop-band tolerance: d_s <= 0.1 I am attempting to learn more about MATLAB and I am having trouble with specific filter design and it would be helpful to have an example.
Design an IIR digital filter based on the bilinear transformation method using the following transfer function...
Design an IIR digital filter based on the bilinear transformation method using the following transfer function as a reference (use three decimal places of precision for your response): H (s) = 5 / (s ^ 2 + 1.1s +5) The digital filter must have a resonant frequency at wr = pi / 3 a) Calculate H (z) b) Find the correctly simplified difference equation of the designed system. c) Implement the discrete system obtained using block diagram.. Show every step
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT