Question

In: Statistics and Probability

Let x1, x2, . . . , x100 denote the actual net weights (in pounds) of...

Let x1, x2, . . . , x100 denote the actual net weights (in pounds) of 100 randomly selected bags of fertilizer. Suppose that the weight of a randomly selected bag has a distribution with mean 30 lb and variance 1 lb2. Let x be the sample mean weight (n = 100).

(a) What is the probability that the sample mean is between 29.85 lb and 30.15 lb? (Round your answer to four decimal places.) P(29.85 ≤ x ≤ 30.15) =

(b) What is the probability that the sample mean is less than 30 lb?

Solutions

Expert Solution


Related Solutions

Let T(x1, x2) = (-x1 + 3x2, x1 - x2) be a transformation. a) Show that...
Let T(x1, x2) = (-x1 + 3x2, x1 - x2) be a transformation. a) Show that T is invertible. b)Find T inverse.
Let the utility function be given by u(x1, x2) = √x1 + x2. Let m be...
Let the utility function be given by u(x1, x2) = √x1 + x2. Let m be the income of the consumer, P1 and P2 the prices of good 1 and good 2, respectively. To simplify, normalize the price of good 1, that is P1 = £1. (a) Write down the budget constraint and illustrate the set of feasible bundles using a figure. (b) Suppose that m = £100 and that P2 = £10. Find the optimal bundle for the consumer....
Let X1, X2, X3, X4, X5, and X6 denote the numbers of blue, brown, green, orange,...
Let X1, X2, X3, X4, X5, and X6 denote the numbers of blue, brown, green, orange, red, and yellow M&M candies, respectively, in a sample of size n. Then these Xi's have a multinomial distribution. Suppose it is claimed that the color proportions are p1 = 0.22, p2 = 0.13, p3 = 0.18, p4 = 0.2, p5 = 0.13, and p6 = 0.14. (a) If n = 12, what is the probability that there are exactly two M&Ms of each...
Let X1 and X2 have the joint pdf f(x1,x2) = 2 0<x1<x2<1; 0.  elsewhere (a) Find the...
Let X1 and X2 have the joint pdf f(x1,x2) = 2 0<x1<x2<1; 0.  elsewhere (a) Find the conditional densities (pdf) of X1|X2 = x2 and X2|X1 = x1. (b) Find the conditional expectation and variance of X1|X2 = x2 and X2|X1 = x1. (c) Compare the probabilities P(0 < X1 < 1/2|X2 = 3/4) and P(0 < X1 < 1/2). (d) Suppose that Y = E(X2|X1). Verify that E(Y ) = E(X2), and that var(Y ) ≤ var(X2).
Let X1 and X2 be independent standard normal variables X1 ∼ N(0, 1) and X2 ∼...
Let X1 and X2 be independent standard normal variables X1 ∼ N(0, 1) and X2 ∼ N(0, 1). 1) Let Y1 = X12 + X12 and Y2 = X12− X22 . Find the joint p.d.f. of Y1 and Y2, and the marginal p.d.f. of Y1. Are Y1 and Y2 independent? 2) Let W = √X1X2/(X12 +X22) . Find the p.d.f. of W.
Let (Z, N, +, ·) be an ordered integral domain. Let {x1, x2, . . ....
Let (Z, N, +, ·) be an ordered integral domain. Let {x1, x2, . . . , xn} be a subset of Z. Prove there exists an i, 1 ≤ i ≤ n such that xi ≥ xj for all 1 ≤ j ≤ n. Prove that Z is an infinite set. (Remark: How do you tell if a set is infinite??)
let X1, X2, X3 be random variables that are defined as X1 = θ + ε1...
let X1, X2, X3 be random variables that are defined as X1 = θ + ε1 X2 = 2θ + ε2 X3 = 3θ + ε3 ε1, ε2, ε3 are independent and the mean and variance are the following random variable E(ε1) = E(ε2) = E(ε3) = 0 Var(ε1) = 4 Var(ε2) = 6 Var(ε3) = 8 What is the Best Linear Unbiased Estimator(BLUE) when estimating parameter θ from the three samples X1, X2, X3
Let X1, X2, X3 be continuous random variables with joint pdf f(X1, X2, X3)= 2 if...
Let X1, X2, X3 be continuous random variables with joint pdf f(X1, X2, X3)= 2 if 1<X1<2 -1<X2<0 -X2-1<X3<0                         0 otherwise Find Cov(X2, X3)
Let X1,X2,X3 be i.i.d. N(0,1) random variables. Suppose Y1 = X1 + X2 + X3, Y2...
Let X1,X2,X3 be i.i.d. N(0,1) random variables. Suppose Y1 = X1 + X2 + X3, Y2 = X1 −X2, Y3 =X1 −X3. Find the joint pdf of Y = (Y1,Y2,Y3)′ using : Multivariate normal distribution properties.
Let T: R2 -> R2 be a linear transformation defined by T(x1 , x2) = (x1...
Let T: R2 -> R2 be a linear transformation defined by T(x1 , x2) = (x1 + 2x2 , 2x1 + 4x2) a. Find the standard matrix of T. b. Find the ker(T) and nullity (T). c. Is T one-to-one? Explain.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT