Question

In: Advanced Math

Let (Z, N, +, ·) be an ordered integral domain. Let {x1, x2, . . ....

Let (Z, N, +, ·) be an ordered integral domain. Let {x1, x2, . . . , xn} be a subset of Z. Prove there exists an i, 1 ≤ i ≤ n such that xi ≥ xj for all 1 ≤ j ≤ n. Prove that Z is an infinite set. (Remark: How do you tell if a set is infinite??)

Solutions

Expert Solution


Related Solutions

Let X1 and X2 be independent standard normal variables X1 ∼ N(0, 1) and X2 ∼...
Let X1 and X2 be independent standard normal variables X1 ∼ N(0, 1) and X2 ∼ N(0, 1). 1) Let Y1 = X12 + X12 and Y2 = X12− X22 . Find the joint p.d.f. of Y1 and Y2, and the marginal p.d.f. of Y1. Are Y1 and Y2 independent? 2) Let W = √X1X2/(X12 +X22) . Find the p.d.f. of W.
Let X1 and X2 be uniform on the consecutive integers -n, -(n+1), ... , n-1, n....
Let X1 and X2 be uniform on the consecutive integers -n, -(n+1), ... , n-1, n. Use convolution to find the mass function for X1 + X2.
Let T(x1, x2) = (-x1 + 3x2, x1 - x2) be a transformation. a) Show that...
Let T(x1, x2) = (-x1 + 3x2, x1 - x2) be a transformation. a) Show that T is invertible. b)Find T inverse.
Let X1,X2,X3 be i.i.d. N(0,1) random variables. Suppose Y1 = X1 + X2 + X3, Y2...
Let X1,X2,X3 be i.i.d. N(0,1) random variables. Suppose Y1 = X1 + X2 + X3, Y2 = X1 −X2, Y3 =X1 −X3. Find the joint pdf of Y = (Y1,Y2,Y3)′ using : Multivariate normal distribution properties.
Let X1, X2, . . . , Xn be a random sample of size n from...
Let X1, X2, . . . , Xn be a random sample of size n from a Poisson distribution with unknown mean µ. It is desired to test the following hypotheses H0 : µ = µ0         versus     H1 : µ not equal to µ0 where µ0 > 0 is a given constant. Derive the likelihood ratio test statistic
Let X1, X2, · · · , Xn (n ≥ 30) be i.i.d observations from N(µ1,...
Let X1, X2, · · · , Xn (n ≥ 30) be i.i.d observations from N(µ1, σ12 ) and Y1, Y2, · · · , Yn be i.i.d observations from N(µ2, σ22 ). Also assume that X's and Y's are independent. Suppose that µ1, µ2, σ12 , σ22  are unknown. Find an approximate 95% confidence interval for µ1µ2.
Let X1, X2, . . . , Xn iid∼ N (µ, σ2 ). Consider the hypotheses...
Let X1, X2, . . . , Xn iid∼ N (µ, σ2 ). Consider the hypotheses H0 : µ = µ0 and H1 : µ (not equal)= µ0 and the test statistic (X bar − µ0)/ (S/√ n). Note that S has been used as σ is unknown. a. What is the distribution of the test statistic when H0 is true? b. What is the type I error of an α−level test of this type? Prove it. c. What is...
Let X1, X2, X3, . . . be independently random variables such that Xn ∼ Bin(n,...
Let X1, X2, X3, . . . be independently random variables such that Xn ∼ Bin(n, 0.5) for n ≥ 1. Let N ∼ Geo(0.5) and assume it is independent of X1, X2, . . .. Further define T = XN . (a) Find E(T) and argue that T is short proper. (b) Find the pgf of T. (c) Use the pgf of T in (b) to find P(T = n) for n ≥ 0. (d) Use the pgf of...
Let X1 and X2 have the joint pdf f(x1,x2) = 2 0<x1<x2<1; 0.  elsewhere (a) Find the...
Let X1 and X2 have the joint pdf f(x1,x2) = 2 0<x1<x2<1; 0.  elsewhere (a) Find the conditional densities (pdf) of X1|X2 = x2 and X2|X1 = x1. (b) Find the conditional expectation and variance of X1|X2 = x2 and X2|X1 = x1. (c) Compare the probabilities P(0 < X1 < 1/2|X2 = 3/4) and P(0 < X1 < 1/2). (d) Suppose that Y = E(X2|X1). Verify that E(Y ) = E(X2), and that var(Y ) ≤ var(X2).
4.Maximize: Z = 2X1+ X2-3X3 Subject to: 2X1+ X2= 14 X1+ X2+ X3≥6 X1, X2, X3≥0...
4.Maximize: Z = 2X1+ X2-3X3 Subject to: 2X1+ X2= 14 X1+ X2+ X3≥6 X1, X2, X3≥0 Solve the problem by using the M-technique.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT