Question

In: Advanced Math

1. Use the ę notation to prove the following limits: lim n→∞ [n^2+ 3ncos(2n+1)+2] / [n^2−nsin(4n+3)+4]...

1. Use the ę notation to prove the following limits:

lim n→∞ [n^2+ 3ncos(2n+1)+2] / [n^2−nsin(4n+3)+4] = 1

2. Let {an} a sequence converging to L > 0. Show ∃N ∈ N, ∀n ∈ N, n ≥ N, an > 0

3.Let {an} a sequence converging to L. Let {bn} a sequence such that ∃Nb ∈ N, ∀n ∈ N, n ≥ Nb, an = bn. Show that {bn} converges to L as well.

Thank you. Please complete proofs fully.

Solutions

Expert Solution


Related Solutions

Prove the following by induction: 2 + 4 + 6 + …+ 2n = n(n+1) for...
Prove the following by induction: 2 + 4 + 6 + …+ 2n = n(n+1) for all integers n Show all work
2. [6 marks] (Induction) Prove that 21 divides 4n+1 + 5 2n−1 whenever n is a...
2. [6 marks] (Induction) Prove that 21 divides 4n+1 + 5 2n−1 whenever n is a positive integer. HINT: 25 ≡ 4(mod 21)
(1)Prove 6^(2n)-4^(2n) must be a mutiple of 20 (2)Prove 6^(2n)+4^(2n)-2 must be a multiple of 50
(1)Prove 6^(2n)-4^(2n) must be a mutiple of 20 (2)Prove 6^(2n)+4^(2n)-2 must be a multiple of 50
1. Prove or Disprove: If n is a nonnegative integer, then 5 | (2*4n + 3*9n)
1. Prove or Disprove: If n is a nonnegative integer, then 5 | (2*4n + 3*9n)
Prove by induction that: 1) x^n - 1 is divisible by x-1 2)2n < 3^n for...
Prove by induction that: 1) x^n - 1 is divisible by x-1 2)2n < 3^n for all natural numbers n
Use the ε-δ definition of limits to prove that lim x3 −2x2 −2x−3 = −6. 3...
Use the ε-δ definition of limits to prove that lim x3 −2x2 −2x−3 = −6. 3 markx→1 Hint: This question needs students have a thorough understanding of the proof by the ε-δdefinition as well as some good knowledge of what is learnt in Math187/188 and in high school, such as long division, factorization, inequality and algebraic manipulations. End of questions.
Prove these scenarios by mathematical induction: (1) Prove n2 < 2n for all integers n>4 (2)...
Prove these scenarios by mathematical induction: (1) Prove n2 < 2n for all integers n>4 (2) Prove that a finite set with n elements has 2n subsets (3) Prove that every amount of postage of 12 cents or more can be formed using just 4-cent and 5-cent stamps
Use induction to prove that 2 + 4 + 6 + ... + 2n = n2...
Use induction to prove that 2 + 4 + 6 + ... + 2n = n2 + n for n ≥ 1. Prove this theorem as it is given, i.e., don’t first simplify it algebraically to some other formula that you may recognize before starting the induction proof. I'd appreciate if you could label the steps you take, Thank you!
Prove that 2n+10 +n is O(2n)
Prove that 2n+10 +n is O(2n)
(5.1.24) Prove that 1/(2n) ≤ [1 · 3 · 5 · · · · · (2n...
(5.1.24) Prove that 1/(2n) ≤ [1 · 3 · 5 · · · · · (2n − 1)]/(2 · 4 · · · · · 2n) whenever n is a positive integer
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT