Question

In: Advanced Math

(1)Prove 6^(2n)-4^(2n) must be a mutiple of 20 (2)Prove 6^(2n)+4^(2n)-2 must be a multiple of 50

(1)Prove 6^(2n)-4^(2n) must be a mutiple of 20

(2)Prove 6^(2n)+4^(2n)-2 must be a multiple of 50

Solutions

Expert Solution


Related Solutions

Use induction to prove that 2 + 4 + 6 + ... + 2n = n2...
Use induction to prove that 2 + 4 + 6 + ... + 2n = n2 + n for n ≥ 1. Prove this theorem as it is given, i.e., don’t first simplify it algebraically to some other formula that you may recognize before starting the induction proof. I'd appreciate if you could label the steps you take, Thank you!
Prove the following by induction: 2 + 4 + 6 + …+ 2n = n(n+1) for...
Prove the following by induction: 2 + 4 + 6 + …+ 2n = n(n+1) for all integers n Show all work
Prove these scenarios by mathematical induction: (1) Prove n2 < 2n for all integers n>4 (2)...
Prove these scenarios by mathematical induction: (1) Prove n2 < 2n for all integers n>4 (2) Prove that a finite set with n elements has 2n subsets (3) Prove that every amount of postage of 12 cents or more can be formed using just 4-cent and 5-cent stamps
(5.1.24) Prove that 1/(2n) ≤ [1 · 3 · 5 · · · · · (2n...
(5.1.24) Prove that 1/(2n) ≤ [1 · 3 · 5 · · · · · (2n − 1)]/(2 · 4 · · · · · 2n) whenever n is a positive integer
2. [6 marks] (Induction) Prove that 21 divides 4n+1 + 5 2n−1 whenever n is a...
2. [6 marks] (Induction) Prove that 21 divides 4n+1 + 5 2n−1 whenever n is a positive integer. HINT: 25 ≡ 4(mod 21)
Use a mathematical induction for Prove a^(2n-1) + b^(2n-1) is divisible by a + b, for...
Use a mathematical induction for Prove a^(2n-1) + b^(2n-1) is divisible by a + b, for n is a positive integer
By induction: 1. Prove that Σni=1(2i − 1) = n2 2. Prove thatΣni=1 i2 = n(n+1)(2n+1)...
By induction: 1. Prove that Σni=1(2i − 1) = n2 2. Prove thatΣni=1 i2 = n(n+1)(2n+1) / 6 .
Prove by induction that: 1) x^n - 1 is divisible by x-1 2)2n < 3^n for...
Prove by induction that: 1) x^n - 1 is divisible by x-1 2)2n < 3^n for all natural numbers n
1. Use the ę notation to prove the following limits: lim n→∞ [n^2+ 3ncos(2n+1)+2] / [n^2−nsin(4n+3)+4]...
1. Use the ę notation to prove the following limits: lim n→∞ [n^2+ 3ncos(2n+1)+2] / [n^2−nsin(4n+3)+4] = 1 2. Let {an} a sequence converging to L > 0. Show ∃N ∈ N, ∀n ∈ N, n ≥ N, an > 0 3.Let {an} a sequence converging to L. Let {bn} a sequence such that ∃Nb ∈ N, ∀n ∈ N, n ≥ Nb, an = bn. Show that {bn} converges to L as well. Thank you. Please complete proofs fully.
int 50+20 * (50/4) /4
int 50+20 * (50/4) /4
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT