Question

In: Advanced Math

If you add the terms ax^2+bxy+cy^2 to the function L(x,y) = 1 - 0.5y, how would...

If you add the terms ax^2+bxy+cy^2 to the function L(x,y) = 1 - 0.5y, how would this affect the derivatives of L at (0,0)? What a,b and c you would pick to make those derivatives match the derivatives of the f(x,y) = sqrt(x**2+1-x*y-y) at (0,0). Define this new L(x,y).

Solutions

Expert Solution

ANSWER:-

Given that

the terms ax^2+bxy+cy^2

the function L(x,y) = 1 - 0.5y

the derivatives of L at (0,0)


Related Solutions

a) If you add the terms ax^2+bxy+cy^2 to the function L(x,y) = 1 - 0.5y, how...
a) If you add the terms ax^2+bxy+cy^2 to the function L(x,y) = 1 - 0.5y, how would this affect the derivatives of L(x,y) at (0,0)? b) What a, b and c you would pick to make those derivatives match the derivatives of the f(x,y) = sqrt(x^2+1-xy-y) at (0,0). c) Define this new L(x,y).
x'=y-x+(x^3)/7 y' =-x Lyapunov function Ax^2+By^2 for A,B constant. Show stability & define circle for stability...
x'=y-x+(x^3)/7 y' =-x Lyapunov function Ax^2+By^2 for A,B constant. Show stability & define circle for stability area if attraction.
. A monopolist has a cost function given by c(y) = 0.5y 2 and faces a...
. A monopolist has a cost function given by c(y) = 0.5y 2 and faces a demand curve given by P(y) = 120 − y. What is its profit-maximizing level of output? What price will the monopolist charge? • If you put a lump sum tax of $100 on this monopolist, what would its output be? • If you wanted to choose a price ceiling for this monopolist so as to maximize consumer plus producer surplus, what price ceiling should...
1) Find the Taylor series (to second order terms) of the function f(x,y) = x^2 −4x...
1) Find the Taylor series (to second order terms) of the function f(x,y) = x^2 −4x + y + 9 around the point x = 3, y = −1. 2)Explain why the corresponding Taylor Series (to third order terms) will be the same as the second-order series.
Your utility function over x and y is U ( x , y ) = l...
Your utility function over x and y is U ( x , y ) = l n ( x ) + 0.25 y. Your income is $20. You don’t know the prices of x or y so leave them as variables (p x and p y). a) (8 points) Find x*, your demand function for x. Find y*, your demand function for y. b) (10 points) Find the cross-price elasticity of demand for x (E x ∗ , p y:...
1. Consider the cubic function f ( x ) = ax^3 + bx^2 + cx +...
1. Consider the cubic function f ( x ) = ax^3 + bx^2 + cx + d where a ≠ 0. Show that f can have zero, one, or two critical numbers and give an example of each case. 2. Use Rolle's Theorem to prove that if f ′ ( x ) = 0 for all xin an interval ( a , b ), then f is constant on ( a , b ). 3.True or False. The product of...
Given the utility function U ( X , Y ) = X 1 3 Y 2...
Given the utility function U ( X , Y ) = X 1 3 Y 2 3, find the absolute value of the MRS when X=10 and Y=24. Round your answer to 4 decimal places.
dx dt =ax+by dy dt =−x − y, 2. As the values of a and b...
dx dt =ax+by dy dt =−x − y, 2. As the values of a and b are changed so that the point (a,b) moves from one region to another, the type of the linear system changes, that is, a bifurcation occurs. Which of these bifurcations is important for the long-term behavior of solutions? Which of these bifurcations corresponds to a dramatic change in the phase plane or the x(t)and y(t)-graphs?
4. The joint density function of (X, Y ) is f(x,y)=2(x+y), 0≤y≤x≤1 . Find the correlation...
4. The joint density function of (X, Y ) is f(x,y)=2(x+y), 0≤y≤x≤1 . Find the correlation coefficient ρX,Y . 5. The height of female students in KU follows a normal distribution with mean 165.3 cm and s.d. 7.3cm. The height of male students in KU follows a normal distribution with mean 175.2 cm and s.d. 9.2cm. What is the probability that a random female student is taller than a male student in KU?
A random variable Y is a function of random variable X, where y=x^2 and fx(x)=(x+1)/2 from...
A random variable Y is a function of random variable X, where y=x^2 and fx(x)=(x+1)/2 from -1 to 1 and =0 elsewhere. Determine fy(y). In this problem, there are two x values for every y value, which means x=T^-1(y)= +y^0.5 and -y^0.5. Be sure you account for both of these. Ans: fy(y)=0.5y^-0.5
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT