Question

In: Advanced Math

a) If you add the terms ax^2+bxy+cy^2 to the function L(x,y) = 1 - 0.5y, how...

a) If you add the terms ax^2+bxy+cy^2 to the function L(x,y) = 1 - 0.5y, how would this affect the derivatives of L(x,y) at (0,0)?

b) What a, b and c you would pick to make those derivatives match the derivatives of the f(x,y) = sqrt(x^2+1-xy-y) at (0,0).

c) Define this new L(x,y).

Solutions

Expert Solution

The terms to be added to the given function are all either squares of one variable or a product of two variables, i.e., the entire term being added is a polynomial of second degree in two variables x,y, with only second degree terms of both those variables. So, any derivative of this term will be a polynomial of degree 1 in x,y, including only degree 1 terms, i.e., constant multiples of x,y. Obviously, putting x=y=0 will result in the entire term becoming 0, and therefore not affect that derivative of the original term in any way.

This was considering only first order derivatives of the functions.

b) In case the equality of derivatives referred to higher ones too, we compute the second order derivative of f, L and set them to be equal at (0,0).

Similarly, we set and to find b,c.

From the obtained information:

c)


Related Solutions

x'=y-x+(x^3)/7 y' =-x Lyapunov function Ax^2+By^2 for A,B constant. Show stability & define circle for stability...
x'=y-x+(x^3)/7 y' =-x Lyapunov function Ax^2+By^2 for A,B constant. Show stability & define circle for stability area if attraction.
. A monopolist has a cost function given by c(y) = 0.5y 2 and faces a...
. A monopolist has a cost function given by c(y) = 0.5y 2 and faces a demand curve given by P(y) = 120 − y. What is its profit-maximizing level of output? What price will the monopolist charge? • If you put a lump sum tax of $100 on this monopolist, what would its output be? • If you wanted to choose a price ceiling for this monopolist so as to maximize consumer plus producer surplus, what price ceiling should...
1) Find the Taylor series (to second order terms) of the function f(x,y) = x^2 −4x...
1) Find the Taylor series (to second order terms) of the function f(x,y) = x^2 −4x + y + 9 around the point x = 3, y = −1. 2)Explain why the corresponding Taylor Series (to third order terms) will be the same as the second-order series.
Your utility function over x and y is U ( x , y ) = l...
Your utility function over x and y is U ( x , y ) = l n ( x ) + 0.25 y. Your income is $20. You don’t know the prices of x or y so leave them as variables (p x and p y). a) (8 points) Find x*, your demand function for x. Find y*, your demand function for y. b) (10 points) Find the cross-price elasticity of demand for x (E x ∗ , p y:...
1. Consider the cubic function f ( x ) = ax^3 + bx^2 + cx +...
1. Consider the cubic function f ( x ) = ax^3 + bx^2 + cx + d where a ≠ 0. Show that f can have zero, one, or two critical numbers and give an example of each case. 2. Use Rolle's Theorem to prove that if f ′ ( x ) = 0 for all xin an interval ( a , b ), then f is constant on ( a , b ). 3.True or False. The product of...
Given the utility function U ( X , Y ) = X 1 3 Y 2...
Given the utility function U ( X , Y ) = X 1 3 Y 2 3, find the absolute value of the MRS when X=10 and Y=24. Round your answer to 4 decimal places.
dx dt =ax+by dy dt =−x − y, 2. As the values of a and b...
dx dt =ax+by dy dt =−x − y, 2. As the values of a and b are changed so that the point (a,b) moves from one region to another, the type of the linear system changes, that is, a bifurcation occurs. Which of these bifurcations is important for the long-term behavior of solutions? Which of these bifurcations corresponds to a dramatic change in the phase plane or the x(t)and y(t)-graphs?
4. The joint density function of (X, Y ) is f(x,y)=2(x+y), 0≤y≤x≤1 . Find the correlation...
4. The joint density function of (X, Y ) is f(x,y)=2(x+y), 0≤y≤x≤1 . Find the correlation coefficient ρX,Y . 5. The height of female students in KU follows a normal distribution with mean 165.3 cm and s.d. 7.3cm. The height of male students in KU follows a normal distribution with mean 175.2 cm and s.d. 9.2cm. What is the probability that a random female student is taller than a male student in KU?
A random variable Y is a function of random variable X, where y=x^2 and fx(x)=(x+1)/2 from...
A random variable Y is a function of random variable X, where y=x^2 and fx(x)=(x+1)/2 from -1 to 1 and =0 elsewhere. Determine fy(y). In this problem, there are two x values for every y value, which means x=T^-1(y)= +y^0.5 and -y^0.5. Be sure you account for both of these. Ans: fy(y)=0.5y^-0.5
How do you determine convexity/concavity of a function f(x,y)? How about a function f(x,y,z)?
How do you determine convexity/concavity of a function f(x,y)? How about a function f(x,y,z)?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT