Question

In: Math

Consider the following homogeneous linear system: x1 + 2x2 + 7x3 − 9x4 + 31x5 =...

Consider the following homogeneous linear system: x1 + 2x2 + 7x3 − 9x4 + 31x5 = 0 2x1 + 4x2 + 7x3 − 11x4 + 34x5 = 0 3x1 + 6x2 + 5x3 − 11x4 + 29x5 = 0 [10p] a) Find the rank of the coefficient matrix. [5p] b) Use part (a) to determine the dimension of the solution space. [10p] c) Find a basis for the solution space.

Solutions

Expert Solution

augmented matrix is

1 2 7 -9 31
2 4 7 -11 34
3 6 5 -11 29

convert into Reduced Row Eschelon Form...

Add (-2 * row1) to row2

1 2 7 -9 31
0 0 -7 7 -28
3 6 5 -11 29


Add (-3 * row1) to row3

1 2 7 -9 31
0 0 -7 7 -28
0 0 -16 16 -64


Divide row2 by -7

1 2 7 -9 31
0 0 1 -1 4
0 0 -16 16 -64


Add (16 * row2) to row3

1 2 7 -9 31
0 0 1 -1 4
0 0 0 0 0


Add (-7 * row2) to row1

1 2 0 -2 3
0 0 1 -1 4
0 0 0 0 0

reduced system is

there is 2 pivot entry at first and third column hence rank of matrix is 2

there is no pivot entry at second , fourth and fifth column

hence dimension of solution space is 3

.

find l solution

...............

..........free variable

..................

.........free variable

.........free variable

.


Related Solutions

Consider the following linear program:   maximize z = x1 + 4x2 subject to: x1 + 2x2...
Consider the following linear program:   maximize z = x1 + 4x2 subject to: x1 + 2x2 <= 13 x1 - x2 <= 8 - x1 + x2 <= 2 -3 <= x1 <= 8 -5 <= x2 <= 4 Starting with x1 and x2 nonbasic at their lower bounds, perform ONE iteration of the Bounded Variables Revised Simplex Method. (Tableau or matrix form is acceptable). Show your work. Clearly identify the entering and leaving variables. After the pivot, identify the...
1. Solve linear system using Gaussian elimination a) x1 + 2x2 + x3 = 2 -x1...
1. Solve linear system using Gaussian elimination a) x1 + 2x2 + x3 = 2 -x1 − 3x2 + 2x3 = -3   x1 − 6x2 + 3x3 = -6 b) -2b + 2c = 10 3a + 12b -3c = -6 6a + 18b + 0c = 19 c) 4x - 1y + 4z + 3t = 5 1x - 4z + 6t = 7 5x - 5y + 1z + 2t = -5 4x + 1y + 3z +...
Consider the following. x1 − 2x2 + 3x3 = 3 −x1 + 3x2 − x3 =...
Consider the following. x1 − 2x2 + 3x3 = 3 −x1 + 3x2 − x3 = 2 2x1 − 5x2 + 5x3 = 3 (a) Write the system of linear equations as a matrix equation, AX = B. x1 x2 x3 = (b) Use Gauss-Jordan elimination on [A    B] to solve for the matrix X. X = x1 x2 x3 =
3. Consider the following linear program: MIN 6x1 + 9x2 ($ cost) s.t. x1 +2x2 ≤8...
3. Consider the following linear program: MIN 6x1 + 9x2 ($ cost) s.t. x1 +2x2 ≤8 10x1 + 7.5x2 ≥ 30 x2 ≥ 2 x1,x2 ≥0 The Management Scientist provided the following solution output: OPTIMAL SOLUTION Objective Function Value = 27.000 Variable Value Reduced Cost X1 1.500 0.000 X2 2.000 0.000 Constraint Slack/Surplus Dual Price 1 2.500 0.000 2 0.000 −0.600 3 0.000 −4.500 OBJECTIVE COEFFICIENT RANGES Variable Lower Limit Current Value Upper Limit X1 0.000 6.000 12.000 X2 4.500...
Design a Python class named HomogenEquation for a system of 2x2 linear homogeneous equations: ax+by=e cx+dy=f...
Design a Python class named HomogenEquation for a system of 2x2 linear homogeneous equations: ax+by=e cx+dy=f The class should contain: • The data fields a, b, c, d, e and f. • A constructor with the arguments a, b, c, d, e and f. • A method named isSolvable() that returns true if − is not 0. • The method getXY() that returns the solution for the equation. Write a test program that prompts the user to enter a, b,...
Exercise Solve the following linear programs graphically. Maximize            Z = X1 + 2X2 Subject to            2X1...
Exercise Solve the following linear programs graphically. Maximize            Z = X1 + 2X2 Subject to            2X1 + X2 ≥ 12                             X1 + X2 ≥ 5                            -X1 + 3X2 ≤ 3                            6X1 – X2 ≥ 12                            X1, X2 ≥ 0
Exercise Minimize            Z = X1 - 2X2 Subject to            X1 - 2X2 ≥ 4            &
Exercise Minimize            Z = X1 - 2X2 Subject to            X1 - 2X2 ≥ 4                             X1 + X2 ≤ 8                            X1, X2 ≥ 0
For the system 2x1 − 4x2 + x3 + x4 = 0, x1 − 2x2 +...
For the system 2x1 − 4x2 + x3 + x4 = 0, x1 − 2x2 + 5x4 = 0, find some vectors v1, . . . , vk such that the solution set to this system equals span(v1, . . . , vk).
Consider a homogeneous system of linear equations with m equations and n variables. (i) Prove that...
Consider a homogeneous system of linear equations with m equations and n variables. (i) Prove that this system is consistent. (ii) Prove that if m < n then the system has infinitely many solutions. Hint: Use r (the number of pivot columns) of the augmented matrix.
Consider the following linear programming problem. min −x1 + 4x2 subject to: • x1 + x2...
Consider the following linear programming problem. min −x1 + 4x2 subject to: • x1 + x2 ≥ 1 • 3x1 + x2 ≤ .5 • x1, x2 ≥ 0 Formulate the dual of this problem.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT