Question

In: Physics

In the R-L circuit below, a resistor R (8.0 Ω) is connected in series to an...

In the R-L circuit below, a resistor R (8.0 Ω) is connected in series to an inductor L (24.0 mH) and a battery ε (12.0 V). When the circuit is closed, current grows with time.

(a) What is the time constant of the circuit?

(b) What is the current in the circuit at one time constant?

(c) What is the maximum magnetic energy in the circuit?

(d) At what time after closing the switch will the magnetic energy be 50% of the maximum magnetic energy?

Solutions

Expert Solution

Part (a)

Time constant is given as :

Part (b)

Current at any time in rl circuit is given by :

Part(c)

Magnetic energy is given as :

Part(d)

Current when magnetic energy is become 50% of maximum is given by:

So time is calculated as:

By taking log both side


Related Solutions

A resistor of R = 10 Ω is connected in series with an inductor of L...
A resistor of R = 10 Ω is connected in series with an inductor of L = 2 H and a direct voltage source of 50 V forming an RL circuit. Determine the current at time t, assuming that current does not initially flow through the circuit. What is the maximum current flowing through the circuit? In what time is half the maximum current reached?
An L-R-C series circuit consists of a 60.0 Ω resistor, a 10.0 μF capacitor, a 3.60...
An L-R-C series circuit consists of a 60.0 Ω resistor, a 10.0 μF capacitor, a 3.60 mH inductor, and an ac voltage source of voltage amplitude 60.0 V operating at 1450 Hz . a.) Find the current amplitude across the inductor, the resistor, and the capacitor. b.) Find the voltage amplitudes across the inductor, the resistor, and the capacitor. c.) Why can the voltage amplitudes add up to more than 60.0 V ? d.) If the frequency is now doubled,...
An unknown resistor R is connected to a 18.0 Ω resistor, and the combination is attached...
An unknown resistor R is connected to a 18.0 Ω resistor, and the combination is attached to an ideal battery. When the two resistors are combined in parallel, they consume 7.40 times as much power as when they are combined in series. Determine the two possible values for R. 1. Enter the smaller possible value of R. 2. Enter the larger possible value of R.
One RL series circuit contains the resistor R1= 2 Ω and inductor L = 10 H....
One RL series circuit contains the resistor R1= 2 Ω and inductor L = 10 H. (i) Write the first order differential equation for this circuit in time constant form. (ii) Determine the time constant for this system (iii) Calculate the steady state gain of the system. (iv) Determine the time constant and steady state gain when the inductance is doubled (v) In the context of positioning of poles on the S-plane, what does the ‘real part’ represent and what...
A 56.0-Ω resistor is connected in parallel with a 121.0-Ω resistor. This parallel group is connected...
A 56.0-Ω resistor is connected in parallel with a 121.0-Ω resistor. This parallel group is connected in series with a 22.0-Ω resistor. The total combination is connected across a 15.0-V battery. (a) Find the current in the 121.0-Ω resistor. A (b) Find the power dissipated in the 121.0-Ω resistor. W
Just need E A resistor R = 6 Ωis connected in series with an inductor L...
Just need E A resistor R = 6 Ωis connected in series with an inductor L = 135 mH and a battery V = 12 volts at t = 0. a) What is the time constant of this LR circuit? b) How many seconds will it take for the voltage across the inductor to equal 10 volts? c) How many seconds will it take for the current to increase to 80% of its maximum value? d) How many seconds will...
In an RL series circuit with L = 1/100 H, R = 20 Ω, and E...
In an RL series circuit with L = 1/100 H, R = 20 Ω, and E = 60 V. Determine the limit of the maximum current reached (At the function you found to determine the current as a function of time apply the limit when t goes to infinity) and determine the time in which it reaches half of that value. Take i (0) = 0 A.
In a series oscillating RLC circuit, R = 16.4 Ω, C = 30.9 μF, L =...
In a series oscillating RLC circuit, R = 16.4 Ω, C = 30.9 μF, L = 8.80 mH, and E = Emsinωdt with Em = 44.8 V and ωd = 2900 rad/s. For time t = 0.434 ms find (a) the rate Pg at which energy is being supplied by the generator, (b) the rate PC at which the energy in the capacitor is changing, (c) the rate PL at which the energy in the inductor is changing, and (d)...
An ac circuit has a resistance of 40 Ω connected in series to an inductor of...
An ac circuit has a resistance of 40 Ω connected in series to an inductor of inductive reactance equal to 30 Ω at a frequency of 50 Hz. Find the inductance of the inductor.
A 24.0-V battery is connected in series with a resistor and an inductor, with R =...
A 24.0-V battery is connected in series with a resistor and an inductor, with R = 4.60 Ω and L = 7.00 H, respectively. (a) Find the energy stored in the inductor when the current reaches its maximum value. ________J (b) Find the energy stored in the inductor at an instant that is a time interval of one time constant after the switch is closed. ________J
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT