Question

In: Physics

An ac circuit has a resistance of 40 Ω connected in series to an inductor of...

An ac circuit has a resistance of 40 Ω connected in series to an inductor of inductive reactance equal to 30 Ω at a frequency of 50 Hz. Find the inductance of the inductor.

Solutions

Expert Solution

                                                                                                                                  


Related Solutions

a circuit that has a resistor, capacitor, and inductor in series with a 5V AC voltage...
a circuit that has a resistor, capacitor, and inductor in series with a 5V AC voltage source R = 5 Ω; L = 1 mH; C = 447 a) Find ω0 and f0 b) Complete the table f = f0 f = 0.5f0 f = 1.5f0 I VL Vc c) What is the phase between circuit current and applied voltage at f = f0 (in radians) d) Determine if the below statements are true or false Below resonance (f <...
A resistor of R = 10 Ω is connected in series with an inductor of L...
A resistor of R = 10 Ω is connected in series with an inductor of L = 2 H and a direct voltage source of 50 V forming an RL circuit. Determine the current at time t, assuming that current does not initially flow through the circuit. What is the maximum current flowing through the circuit? In what time is half the maximum current reached?
An RLC series circuit has a 60 Ω resistor, a 3.5 mH inductor, and a 6...
An RLC series circuit has a 60 Ω resistor, a 3.5 mH inductor, and a 6 μF capacitor. Find the circuit’s impedance at 55 Hz and 12 kHz. If the voltage source has Vrms = 110 V, what is Irms at each frequency?    
An RLC series circuit has a 2.50 Ω resistor, a 100 µH inductor, and an 87.5...
An RLC series circuit has a 2.50 Ω resistor, a 100 µH inductor, and an 87.5 µFcapacitor. (a) If the voltage source is Vrms = 5.60 V , what is the Irms at 120 Hz? A ( ± 0.001 A) (b) What is the phase angle of the current vs voltage at this frequency? Enter a positive number between 0 and 90 degrees ( ± 0.1 degrees) (c) What is the Irms at 5.0 kHz? A ( ± 0.01 A)...
An RLC series circuit has a 2.60 Ω resistor, a 200 µH inductor, and an 82.0...
An RLC series circuit has a 2.60 Ω resistor, a 200 µH inductor, and an 82.0 µF capacitor. (a) Find the circuit's impedance (in Ω) at 120 Hz. ________Ω (b) Find the circuit's impedance (in Ω) at 5.00 kHz. ________Ω (c) If the voltage source has Vrms = 5.60 V, what is Irms (in A) at each frequency? Irms, 120 Hz= _______A Irms, 5.00 kHz= _______A (d) What is the resonant frequency (in kHz) of the circuit? ________kHz (e) What...
2)If an LRC series circuit has a resistance of 20 ohms and an inductor of L...
2)If an LRC series circuit has a resistance of 20 ohms and an inductor of L = 1 H, find the capacitance C so that the circuit is critically damped. Solve this case with the external force is E(t)=32e^(-32t) volts, q(0)=0, q'(0)=5
A capacitor is fully charged and then connected in series to an inductor with zero resistance...
A capacitor is fully charged and then connected in series to an inductor with zero resistance wires. This is an ideal L-C circuit that will oscillate the current direction. Explain HOW and WHY this circuit oscillates and discuss energy conservation in this oscillation behavior. Your response should be at least 3 paragraphs to show your mastery of the concepts.
A capacitor is fully charged and then connected in series to an inductor with zero resistance...
A capacitor is fully charged and then connected in series to an inductor with zero resistance wires. This is an ideal L-C circuit that will oscillate the current direction. Explain HOW and WHY this circuit oscillates and discuss energy conservation in this oscillation behavior. Your response should be at least 3 paragraphs to show your mastery of the concepts.
A capacitor is fully charged and then connected in series to an inductor with zero resistance...
A capacitor is fully charged and then connected in series to an inductor with zero resistance wires. This is an ideal L-C circuit that will oscillate the current direction. Explain HOW and WHY this circuit oscillates and discuss energy conservation in this oscillation behavior. Your response should be at least 3 paragraphs to show your mastery of the concepts.
Part A: 1800Ω resistor is connected in series with a 200mH inductor and an ac power...
Part A: 1800Ω resistor is connected in series with a 200mH inductor and an ac power supply. 1. At what frequency will the combination have 2x the impedance that it has at 120Hz? Part B: A 300Ω resistor is in series with a 0.115H inductor and a 0.600μF capacitor. 2. What is the impedance of the circuit at a frequency of f1 = 500Hz and at a frequency of f2 = 1000Hz? (Answer as Z1, Z2 in Ω) 3. In...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT