Question

In: Physics

An unknown resistor R is connected to a 18.0 Ω resistor, and the combination is attached...

An unknown resistor R is connected to a 18.0 Ω resistor, and the combination is attached to an ideal battery. When the two resistors are combined in parallel, they consume 7.40 times as much power as when they are combined in series. Determine the two possible values for R.

1. Enter the smaller possible value of R.

2. Enter the larger possible value of R.

Solutions

Expert Solution

a) Small possible value of R is 3.4563 ohm

b) Large possible value of R is 93.7436 ohm


Related Solutions

A resistor of unknown resistance and a 22 Ω resistor are connected across a 20 V...
A resistor of unknown resistance and a 22 Ω resistor are connected across a 20 V emf in such a way that a 2.0 A current is observed in the emf. What is the value of the unknown resistance?
A resistor of R = 10 Ω is connected in series with an inductor of L...
A resistor of R = 10 Ω is connected in series with an inductor of L = 2 H and a direct voltage source of 50 V forming an RL circuit. Determine the current at time t, assuming that current does not initially flow through the circuit. What is the maximum current flowing through the circuit? In what time is half the maximum current reached?
A 56.0-Ω resistor is connected in parallel with a 121.0-Ω resistor. This parallel group is connected...
A 56.0-Ω resistor is connected in parallel with a 121.0-Ω resistor. This parallel group is connected in series with a 22.0-Ω resistor. The total combination is connected across a 15.0-V battery. (a) Find the current in the 121.0-Ω resistor. A (b) Find the power dissipated in the 121.0-Ω resistor. W
In the R-L circuit below, a resistor R (8.0 Ω) is connected in series to an...
In the R-L circuit below, a resistor R (8.0 Ω) is connected in series to an inductor L (24.0 mH) and a battery ε (12.0 V). When the circuit is closed, current grows with time. (a) What is the time constant of the circuit? (b) What is the current in the circuit at one time constant? (c) What is the maximum magnetic energy in the circuit? (d) At what time after closing the switch will the magnetic energy be 50%...
A 215 Ω resistor, a 0.900 H inductor, and a 6.50 μF capacitor are connected in...
A 215 Ω resistor, a 0.900 H inductor, and a 6.50 μF capacitor are connected in series across a voltage source that has voltage amplitude 29.5 Vand an angular frequency of 220 rad/s . a) What is v at t= 18.0 ms ? ANS: -27.7V b) What is vR at t= 18.0 ms ? c)What is vL at t= 18.0 ms ? d)What is  vC at t= 18.0 ms ? e)What is VR? f)What is VC? g)What is VL?
A 197 Ω resistor, a 0.925 H inductor, and a 5.75 μF capacitor are connected in...
A 197 Ω resistor, a 0.925 H inductor, and a 5.75 μF capacitor are connected in series across a voltage source that has voltage amplitude 31.5 V and an angular frequency of 230 rad/s. What is v at t= 19.0 ms? What is vR at t= 19.0 ms? What is vL at t= 19.0 ms? What is  vC at t= 19.0 ms? Compare vC+vL+vR and v at this instant. What is VR? What is VC? What is VL? Compare V and...
A 190 Ω resistor, a 0.875 H inductor, and a 5.75 μF capacitor are connected in...
A 190 Ω resistor, a 0.875 H inductor, and a 5.75 μF capacitor are connected in series across a voltage source that has voltage amplitude 32.0 V and an angular frequency of 270 rad/s. A. What is v at t= 22.0 ms ? B. What is vR at t= 22.0 ms ? C. What is vL at t= 22.0 ms ? D. What is vC at t= 22.0 ms ? E. Compare vC+vL+vR and v at this instant: vC+vL+vR<v vC+vL+vR>v...
Suppose that Ω ⊆ R n is bounded, and path-connected, and u ∈ C2 (Ω) ∩...
Suppose that Ω ⊆ R n is bounded, and path-connected, and u ∈ C2 (Ω) ∩ C(∂Ω) satisfies ( −∆u = 0 in Ω, u = g on ∂Ω. Prove that if g ∈ C(∂Ω) with g(x) = ( ≥ 0 for all x ∈ ∂Ω, > 0 for some x ∈ ∂Ω, then u(x) > 0 for all x ∈ Ω
A 24-mH inductor, an 8.1-Ω resistor, and a 5.9-V battery are connected in series as in...
A 24-mH inductor, an 8.1-Ω resistor, and a 5.9-V battery are connected in series as in the figure below. The switch is closed at t = 0. A circuit contains a battery, a switch, an inductor, and a resistor. The circuit starts at the positive terminal of the battery labeled emf ℰ, goes through the switch labeled S, goes through the inductor labeled L, goes through the resistor labeled R and ends at the negative terminal of the battery. (a) Find...
A 140-mH inductor and a 4.80-Ω resistor are connected with a switch to a 6.00-V battery...
A 140-mH inductor and a 4.80-Ω resistor are connected with a switch to a 6.00-V battery as shown in the figure above. (a) After the switch is first thrown to a (connecting the battery), what time interval elapses before the current reaches 220 mA? ms (b) What is the current in the inductor 10.0 s after the switch is closed? A (c) Now the switch is quickly thrown from a to b. What time interval elapses before the current in...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT