Question

In: Physics

Suppose two plates lie in parallel horizontal planes, one plate in the xy plane at  z =...

Suppose two plates lie in parallel horizontal planes, one plate in the xy plane at  z = 0 and the other plate in the plane that is parallel to the xy plane at z = 10 mm. Between the plates is a constant electric field directed vertically upward (that is, in the positive z direction). A proton and an electron are launched in the positive x direction with the same initial velocity from position (0, 0, 5.0 mm).

Part A :If the proton strikes a plate at (190 mm , 0, 10 mm), where does the electron strike?

Solutions

Expert Solution

electric force=charge*electric field

so the electric force on the proton will be in the vertically upward direction and electric force on the electron is towards vertically downwards.

for the proton:

let the velocity towards +ve x axis is v m/s

force along vertically upward direction=q*E

acceleration=q*E/mp

where mp=mass of proton

let time taken to strike the plate is t seconds.

then 0.5*acceleration*time^2=5 mm

==> time=sqrt(2*0.005/acceleration)...(1)

horizontaol distance=velocity*time

so the horizontal distance , where the proton strikes depends upon time taken to reach the top plate.

time taken varies inversely with square root of acceleration.

acceleration varies inversely with mass.

hence time taken varies directly with square root of mass.

so horizontal distance covered by proton/distance covered by electron=square root of (mass of proton/mass of electron)

=41.931

==> distance covered by electron=190/41.931=4.5312 mm


Related Solutions

Two infinite planes of charge lie parallel to each other and to the yz plane. One...
Two infinite planes of charge lie parallel to each other and to the yz plane. One is at x = -2 m and has a surface charge density of ϝ = -3.2 µC/m2. The other is at x = 3 m and has a surface charge density of ϝ = 4.0 µC/m2. Find the electric field for the following locations. (a) x < -2 m = N/C (i hat) (b) -2 m < x < 3 m = N/C (i...
A viscous incompressible fluid is between two parallel plates (that are along the x-z plane), one...
A viscous incompressible fluid is between two parallel plates (that are along the x-z plane), one of them is at y = 0 and the other at y = d. a) Considerthecasewheretheflowisstationaryinthezˆdirection, driven by a pressure gradient. Write down the Navier-Stokes equations and solve for the velocity field after imposing the relevant boundary conditions. [10 points] b) The pressure gradient is now removed, but the plate at y = d is moved in an oscillatory fashion with velocity ue−iωt in...
Two flat plates of glass with parallel faces are on a table, one plate on the...
Two flat plates of glass with parallel faces are on a table, one plate on the other. Each plate is 11.0 cm long and has a refrac- tive index of 1.55. A very thin sheet of metal foil is inserted under the end of the upper plate to raise it slightly at that end, in a man- ner similar to that discussed in Example 35.4. When you view the glass plates from above with reflected white light, you observe that,...
A parallel plate capacitor consisting of square plates is charged. One edge of the plates is...
A parallel plate capacitor consisting of square plates is charged. One edge of the plates is 0.4 (m). When the current is 5 (A), the rate of change of the electric field between the plates is approximately how many V / (m.s). Eo = 8.85x10-12 (SI)
A plane parallel-plate capacitor consists of two identical circular metal plates, each of radius 2.50 cm....
A plane parallel-plate capacitor consists of two identical circular metal plates, each of radius 2.50 cm. the plates separated by 1.00 micrometer. The charge on the capacitor is 3.50 nC. Values of standard constant can be found in your notes or the textbook. For these questions, enter only the numerical values. Do not enter the units, which are already given after the blank. Note that the data is given to 3 significant figures. You MUST enter your answers also to...
A parallel plate capacitor is composed of two parallel plates of aluminium foil, each with a...
A parallel plate capacitor is composed of two parallel plates of aluminium foil, each with a surface area of 2.5 m2 that are separated by 2.0 mm The foils are then oppositely charged with 5 mC of charge. a) what is the electric field between and outside of the capacitor near its middle ? b) If a dust particle (m = 0.5 ng) picks up 10,000 electrons and finds itself right near the negatively charge plate, what is its KE...
A parallel-plate capacitor is constructed of two horizontal 17.2-cm-diameter circular plates. A 1.1 g plastic bead...
A parallel-plate capacitor is constructed of two horizontal 17.2-cm-diameter circular plates. A 1.1 g plastic bead with a charge of -8.0 nC is suspended between the two plates by the force of the electric field between them. What is the charge on the positive plate?
Suppose two circular metallic plates of radius R and separation d forms a parallel plate capacitor....
Suppose two circular metallic plates of radius R and separation d forms a parallel plate capacitor. Let Q be the instantaneous value of charge on either plate and is changing with time. (a) Calculate the Poynting vectorS.(b) How is the net energy flow into the capacitor is related to the rate of change of capacitor energy?
Suppose that a parallel-plate capacitor has circular plates with radius R = 18 mm and a...
Suppose that a parallel-plate capacitor has circular plates with radius R = 18 mm and a plate separation of 3.6 mm. suppose also that a sinusoidal potential difference with a maximum value of 153 V and a frequency of 60 Hz is applied across the plates: that is, V = (153 V) sin[2 ?(60 Hz)t] Find Bmax, the maximum value of the induced magnetic that occurs at r = R.
Suppose that a parallel-plate capacitor has circular plates with radius R = 60.0 mm and a...
Suppose that a parallel-plate capacitor has circular plates with radius R = 60.0 mm and a plate separation of 4.6 mm. Suppose also that a sinusoidal potential difference with a maximum value of 360 V and a frequency of 120 Hz is applied across the plates; that is V=(360.0 V)sin((2.*π)*(120 Hz * t)). Find Bmax(R), the maximum value of the induced magnetic field that occurs at r = R. Find B(r = 30.0 mm). Find B(r = 120.0 mm). Find...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT