In: Physics
Suppose that a parallel-plate capacitor has circular plates with radius R = 60.0 mm and a plate separation of 4.6 mm. Suppose also that a sinusoidal potential difference with a maximum value of 360 V and a frequency of 120 Hz is applied across the plates; that is
V=(360.0 V)sin((2.*π)*(120 Hz * t)).
Find Bmax(R), the maximum value of the induced magnetic field that
occurs at r = R.
Find B(r = 30.0 mm).
Find B(r = 120.0 mm).
Find B(r = 180.0 mm).
R =60 mm , d =4.6 mm,
V = (360V) sin((2.*π)*(120 Hz * t)).
From Ampheres law
B.dl = o id
id =eo (dE/dt) =eo AdE/dt
E = V/d
V=(360.0 V)sin((2.*π)*(120 Hz * t)).
dE/dt = (360)(240π)cos((2.*π)*(120 Hz * t))/d
id =eo (πR2) (360)(240π)cos((2.*π)*(120 Hz * t))/d
B.dl = B(2πr) = oeo (πR2) (360)(240π)cos((2.*π)*(120 Hz * t))/d
oeo =1/c^2
for maximum B value
Bmax = 43200 (πR2) /rdc2
For r =R
Bmax = 43200 (πR) /dc2
Bmax = (43200*3.14*0.06)/(0.0046)(3*108)2
Bmax = 1.966x10-11 T
For r =30 mm
Bmax = 43200 (πR2) /rdc2
= 43200(3.14*60*60)/(30*4.6)(3*108)2
Bmax = 3.93x10-11 T
For r = 120 mm
Bmax = 43200 (πR2) /rdc2
= 43200(3.14*60*60)/(120*4.6)(3*108)2
Bmax = 0.983x10-11 T
For r =180 mm
Bmax = 43200 (πR2) /rdc2
= 43200(3.14*60*60)/(180*4.6)(3*108)2
Bmax = 0.655x10-11 T