Question

In: Physics

Suppose two circular metallic plates of radius R and separation d forms a parallel plate capacitor....

Suppose two circular metallic plates of radius R and separation d forms a parallel plate capacitor. Let Q be the instantaneous value of charge on either plate and is changing with time. (a) Calculate the Poynting vectorS.(b) How is the net energy flow into the capacitor is related to the rate of change of capacitor energy?

Solutions

Expert Solution

given two circular metallic plates, radius R each
plate seperation = d

this forms a parallel plate capacitor
let Q be instantaneous charge on either plate, and its changing with time

a. now, cpaacitance C = A*epsilon/d
8.98*10^9 = 1/4*pi*epsilon
so,
C = pi*R^2*epsilon/d

now, since the capacitor is being charged
charge at any time = Q
hence current at any time, i = dQ/dt

now, electric field due to charge inside the capacitor is from +ve to -ve plate along the direction of current
and magnitude of this field is
|E| = 2*Q/pi*R^2*epsilon [ assuming d << R, the point inside capacitor is too close to the capacitor plate that the plate can be considered an infinite plate]

for magentic field, assume the current flows from south to north (along z direction)
then
magnetic field is tangential with magnitude given by
|B| = 2*mu*dQ/4*pi*r*dt , where r is the radial distance of the point from the center of the capacitor
and mu is permeability of free space

now poynting vector is S
S = E x H
since H is always tangential and E is along z, so S is always radially into the cylinderical axis
the magnitude is 2*Q/pi*r^2*epsilon * 2*mu*dQ/4*pi*r*dt
|S| = Q/pi^2*R^2*r*epsilon * mu*dQ/dt

|S| = (mu*Q/pi^2*R^2*r*epsilon) dQ/dt
radially inwards

b. from conservation of energy we can easily say that
net energy flow into capacitor = integral [ rate of change of capacitor energy * dt] from t = 0 to t = t


Related Solutions

Suppose that a parallel-plate capacitor has circular plates with radius R = 18 mm and a...
Suppose that a parallel-plate capacitor has circular plates with radius R = 18 mm and a plate separation of 3.6 mm. suppose also that a sinusoidal potential difference with a maximum value of 153 V and a frequency of 60 Hz is applied across the plates: that is, V = (153 V) sin[2 ?(60 Hz)t] Find Bmax, the maximum value of the induced magnetic that occurs at r = R.
Suppose that a parallel-plate capacitor has circular plates with radius R = 60.0 mm and a...
Suppose that a parallel-plate capacitor has circular plates with radius R = 60.0 mm and a plate separation of 4.6 mm. Suppose also that a sinusoidal potential difference with a maximum value of 360 V and a frequency of 120 Hz is applied across the plates; that is V=(360.0 V)sin((2.*π)*(120 Hz * t)). Find Bmax(R), the maximum value of the induced magnetic field that occurs at r = R. Find B(r = 30.0 mm). Find B(r = 120.0 mm). Find...
Suppose that a parallel-plate capacitor has circular plates with radius R = 28 mm and a...
Suppose that a parallel-plate capacitor has circular plates with radius R = 28 mm and a plate separation of 5.5 mm. Suppose also that a sinusoidal potential difference with a maximum value of 140 V and a frequency of 77 Hz is applied across the plates; that is, V = (140 V) sin[2π(77 Hz)t]. Find Bmax(R), the maximum value of the induced magnetic field that occurs at r = R.
A parallel-plate capacitor with circular plates of radius a separated by a distance d is being...
A parallel-plate capacitor with circular plates of radius a separated by a distance d is being charged though a resistor R and battery with emf E. 1 (a) (5pts.) Make a diagram showing the direction of the induced magnetic field between the plates. (b) (15pts) Show that the magnitude of this induced magnetic field r < a is given by B(r) = µ0 r 2π a2 E R e −t/RC, where r is the distance to the axis of symmetry...
A parallel plate capacitor with plate separation d is connected to a battery. The capacitor is...
A parallel plate capacitor with plate separation d is connected to a battery. The capacitor is fully charged to Q Coulombs and a voltage of V. (C is the capacitance and U is the stored energy.) Answer the following questions regarding the capacitor charged by a battery. For each statement below, select True or False. With the capacitor connected to the battery, decreasing d increases U. A: True B: False After being disconnected from the battery, inserting a dielectric with...
A parallel plate capacitor with plate separation d is connected to a battery. The capacitor is...
A parallel plate capacitor with plate separation d is connected to a battery. The capacitor is fully charged to Q Coulombs and a voltage of V. (C is the capacitance and U is the stored energy.) Answer the following questions regarding the capacitor charged by a battery. For each statement below, select True or False. True or False With the capacitor connected to the battery, increasing d decreases Q. True or False  After being disconnected from the battery, inserting a dielectric...
A parallel plate capacitor with plate separation d is connected to a battery. The capacitor is...
A parallel plate capacitor with plate separation d is connected to a battery. The capacitor is fully charged to Q Coulombs and a voltage of V. (C is the capacitance and U is the stored energy.) Answer the following questions regarding the capacitor charged by a battery. For each statement below, select True or False. 1. With the capacitor connected to the battery, inserting a dielectric with κ will increase C. 2. With the capacitor connected to the battery, decreasing...
A parallel plate capacitor with plate separation d is connected to a battery. The capacitor is...
A parallel plate capacitor with plate separation d is connected to a battery. The capacitor is fully charged to Q Coulombs and a voltage of V. (C is the capacitance and U is the stored energy.) Answer the following questions regarding the capacitor charged by a battery. For each statement below, select True or False. After being disconnected from the battery, inserting a dielectric with κ will increase C. With the capacitor connected to the battery, inserting a dielectric with...
A parallel plate capacitor with plate separation d is connected to a battery. The capacitor is...
A parallel plate capacitor with plate separation d is connected to a battery. The capacitor is fully charged to Q Coulombs and a voltage of V volts. Let C be the capacitance and U the stored energy. Select True or False for each statement. 1. After being disconnected from the battery, decreasing d increases C. 2. With the capacitor connected to the battery, decreasing d increases C. 3. With the capacitor connected to the battery, decreasing d decreases Q. 4....
A parallel plate capacitor with plate separation d is connected to a battery. The capacitor is...
A parallel plate capacitor with plate separation d is connected to a battery. The capacitor is fully charged to Q Coulombs and a voltage of V. (C is the capacitance and U is the stored energy.) Answer the following questions regarding the capacitor charged by a battery. For each statement below, select True or False. and please explain answers Thanks! 1) With the capacitor connected to the battery, decreasing d increases U 2) After being disconnected from the battery, inserting...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT