In: Economics
FIRST PART: The Stata file ceosalary.dta contains data on the characteristics of 177 chief executive o?cers, which we will use to examine the e?ects of firm performance on CEO salary. The variables in the dataset include 1. salary (1990 compensation, $1000s), 2. age (in years), 3. college (=1 if attended college), 4. grad (=1 if attended graduate school), 5. comten (years with company), 6. ceoten (years as ceo with company), 7. sales (1990 firm sales, millions), 8. profits (1990 profits, millions), 9. mktval (market value, end 1990, millions). a. Load the dataset & inspect characteristics of it: What is the total count of observations in the dataset, how many variables there are in the dataset? b. Generate a summary table with sample means, standard deviations, and Minimum/maximum values for all the variables. c. How many dummy variables are in the data set? d. Are years the person stays with the company as ceo correlated with the salary? e. Is there any relationship between salary and years stayed with the company as ceo? Provide a two-way graph of the variables showing the relationship between the two. f. Run a single regression of salary over years the worker stays with the company as ceo. Is the result supporting your answer to the previous part? g. Do differences in years workers stayed with the company as CEO explain a lot of variation of their salaries? h. Imagine “age” is the variable missing in your single linear regression model above. Is this variable causing omitted variable bias? If yes, is it upward or downward bias? i. Include age in the regression and run a MLRM with age and years as ceo. Did the coefficient of the previous regression change substantially? j. Generate a dummy variable which takes value of 0 if worker is less than 50 years old and 1 otherwise. k. Run a regression of salary on the dummy you created and interpret the coefficient. l. Provide the scatter plot and the regression line for part k. m. Estimate a regression of salary on firm sales and market value. Interpret the e?ects of sales and market value on salaries of CEOs n. Add profits and ceoten to the model. Which firm characteristics are significant determinant of salaries? Interpret the e?ect of an additional year of CEO tenure on salaries. o. Did the coefficient or firm sales change dramatically from part G to part H by adding more regressors? Was the coefficient suffering from omitted variable bias? p. EXTRA CREDIT: Check for heteroscedasticity for the regression of salary and ceoten, what would be the issue if there exist heteroscedasticity? what do you suggest statistically to correct for it? salary age college grad comten ceoten sales profits mktval
salary | age | college | grad | comten | ceoten | sales | profits | mktval |
1161 | 49 | 1 | 1 | 9 | 2 | 6200 | 966 | 23200 |
600 | 43 | 1 | 1 | 10 | 10 | 283 | 48 | 1100 |
379 | 51 | 1 | 1 | 9 | 3 | 169 | 40 | 1100 |
651 | 55 | 1 | 0 | 22 | 22 | 1100 | -54 | 1000 |
497 | 44 | 1 | 1 | 8 | 6 | 351 | 28 | 387 |
1067 | 64 | 1 | 1 | 7 | 7 | 19000 | 614 | 3900 |
945 | 59 | 1 | 0 | 35 | 10 | 536 | 24 | 623 |
1261 | 63 | 1 | 1 | 32 | 8 | 4800 | 191 | 2100 |
503 | 47 | 1 | 1 | 4 | 4 | 610 | 7 | 454 |
1094 | 64 | 1 | 1 | 39 | 5 | 2900 | 230 | 3900 |
601 | 54 | 1 | 1 | 26 | 7 | 1200 | 34 | 533 |
355 | 66 | 1 | 0 | 39 | 8 | 560 | 8 | 477 |
1200 | 72 | 1 | 0 | 37 | 37 | 796 | 35 | 678 |
697 | 51 | 1 | 0 | 25 | 1 | 8200 | 234 | 5700 |
1041 | 63 | 1 | 1 | 21 | 11 | 4300 | 91 | 1400 |
245 | 44 | 1 | 1 | 7 | 7 | 135 | 24 | 558 |
817 | 68 | 1 | 0 | 38 | 4 | 1300 | 55 | 847 |
1675 | 71 | 0 | 0 | 31 | 12 | 674 | 115 | 1200 |
971 | 72 | 1 | 1 | 33 | 24 | 1400 | 69 | 609 |
609 | 58 | 1 | 0 | 36 | 1 | 1100 | 69 | 880 |
470 | 60 | 1 | 1 | 20 | 6 | 2300 | 210 | 2200 |
867 | 59 | 1 | 0 | 36 | 14 | 884 | 81 | 1500 |
752 | 54 | 1 | 0 | 32 | 4 | 1600 | 193 | 3200 |
246 | 51 | 1 | 0 | 8 | 8 | 78 | 13 | 458 |
825 | 56 | 1 | 1 | 4 | 4 | 10700 | 295 | 5900 |
358 | 50 | 1 | 1 | 23 | 4 | 99 | 25 | 2300 |
1162 | 58 | 1 | 0 | 24 | 6 | 3800 | 226 | 1800 |
270 | 43 | 1 | 0 | 15 | 2 | 150 | 28 | 713 |
829 | 56 | 1 | 0 | 14 | 8 | 2200 | 184 | 1500 |
300 | 77 | 0 | 0 | 45 | 26 | 6900 | 483 | 4700 |
1627 | 62 | 1 | 1 | 13 | 4 | 8300 | 596 | 9100 |
1237 | 63 | 1 | 1 | 37 | 9 | 4600 | 108 | 6200 |
540 | 61 | 1 | 1 | 37 | 1 | 5200 | 549 | 5600 |
1798 | 66 | 1 | 1 | 21 | 14 | 24300 | 338 | 12500 |
474 | 40 | 1 | 0 | 18 | 1 | 2700 | 117 | 2000 |
1336 | 60 | 1 | 1 | 21 | 13 | 4500 | 562 | 4300 |
541 | 51 | 1 | 0 | 30 | 4 | 1400 | 82 | 1200 |
129 | 66 | 1 | 1 | 4 | 4 | 59 | 28 | 412 |
1700 | 54 | 1 | 1 | 21 | 5 | 6800 | 1200 | 20400 |
1750 | 66 | 1 | 1 | 31 | 24 | 16200 | 1400 | 17900 |
624 | 61 | 1 | 1 | 21 | 13 | 1100 | 109 | 934 |
791 | 66 | 1 | 0 | 14 | 8 | 2300 | -60 | 487 |
1487 | 51 | 1 | 0 | 3 | 3 | 22200 | 182 | 2800 |
2021 | 56 | 1 | 0 | 34 | 3 | 51300 | 2700 | 42900 |
1550 | 47 | 1 | 1 | 19 | 3 | 1100 | 120 | 4900 |
401 | 64 | 1 | 0 | 44 | 8 | 571 | 57 | 670 |
1295 | 62 | 1 | 0 | 8 | 8 | 10700 | 1300 | 16400 |
449 | 56 | 1 | 0 | 31 | 1 | 661 | 37 | 538 |
456 | 56 | 1 | 1 | 9 | 3 | 381 | 34 | 6700 |
1142 | 53 | 1 | 1 | 30 | 1 | 28000 | 1900 | 26300 |
577 | 64 | 1 | 0 | 26 | 2 | 3000 | 287 | 5700 |
600 | 56 | 1 | 1 | 18 | 7 | 11700 | -40 | 4000 |
649 | 44 | 1 | 1 | 4 | 4 | 336 | 17 | 475 |
822 | 60 | 1 | 0 | 22 | 20 | 896 | 77 | 752 |
1080 | 52 | 1 | 0 | 18 | 5 | 388 | 55 | 1600 |
1738 | 54 | 0 | 0 | 34 | 12 | 10700 | 842 | 15400 |
581 | 54 | 1 | 0 | 19 | 19 | 408 | 23 | 403 |
912 | 54 | 1 | 0 | 9 | 9 | 2600 | 239 | 2400 |
650 | 69 | 1 | 0 | 37 | 13 | 261 | 40 | 817 |
2199 | 52 | 1 | 1 | 8 | 8 | 5600 | 475 | 6300 |
609 | 53 | 1 | 1 | 15 | 15 | 567 | 34 | 498 |
1946 | 73 | 1 | 0 | 25 | 21 | 7800 | 484 | 8000 |
552 | 52 | 1 | 0 | 30 | 1 | 2800 | 308 | 3500 |
481 | 59 | 1 | 1 | 26 | 4 | 611 | 90 | 667 |
526 | 45 | 1 | 0 | 8 | 7 | 2400 | 106 | 2000 |
471 | 60 | 1 | 0 | 3 | 2 | 160 | 7 | 425 |
630 | 56 | 1 | 0 | 29 | 1 | 1700 | -55 | 420 |
622 | 57 | 1 | 0 | 35 | 4 | 2500 | 143 | 1200 |
999 | 52 | 1 | 0 | 28 | 17 | 159 | 21 | 398 |
585 | 60 | 1 | 1 | 36 | 10 | 1700 | 33 | 449 |
1107 | 57 | 1 | 0 | 17 | 6 | 2200 | 149 | 1100 |
1099 | 59 | 1 | 0 | 34 | 10 | 8600 | 182 | 1800 |
425 | 86 | 1 | 1 | 13 | 13 | 36 | 11 | 644 |
2792 | 40 | 1 | 0 | 11 | 11 | 534 | 35 | 888 |
350 | 54 | 1 | 0 | 31 | 4 | 1000 | 46 | 812 |
363 | 58 | 1 | 1 | 36 | 6 | 717 | 80 | 880 |
2265 | 63 | 1 | 1 | 35 | 6 | 18000 | 1700 | 18800 |
377 | 45 | 1 | 0 | 7 | 5 | 238 | 57 | 1200 |
879 | 63 | 1 | 1 | 21 | 9 | 1700 | 212 | 4900 |
720 | 49 | 1 | 0 | 12 | 12 | 672 | 23 | 1400 |
950 | 63 | 1 | 0 | 27 | 14 | 2600 | 6 | 1500 |
1143 | 67 | 0 | 0 | 23 | 3 | 1800 | 56 | 918 |
1064 | 58 | 1 | 0 | 27 | 3 | 3500 | 195 | 2600 |
1253 | 60 | 1 | 1 | 36 | 5 | 2600 | 142 | 3700 |
462 | 58 | 1 | 1 | 23 | 0 | 1400 | 50 | 769 |
174 | 69 | 1 | 0 | 13 | 13 | 29 | 6 | 390 |
474 | 63 | 1 | 0 | 41 | 4 | 2200 | 175 | 2600 |
1248 | 48 | 1 | 1 | 21 | 7 | 3500 | 423 | 7300 |
1101 | 62 | 1 | 1 | 32 | 3 | 954 | 96 | 1200 |
348 | 43 | 1 | 1 | 12 | 10 | 586 | 79 | 1400 |
650 | 55 | 1 | 1 | 28 | 5 | 5700 | -438 | 817 |
875 | 58 | 1 | 1 | 32 | 10 | 5300 | 308 | 2200 |
1600 | 61 | 1 | 0 | 4 | 1 | 12300 | 877 | 9400 |
1500 | 55 | 1 | 1 | 30 | 4 | 7900 | 665 | 4800 |
323 | 39 | 1 | 1 | 15 | 3 | 637 | 63 | 517 |
459 | 59 | 1 | 0 | 33 | 3 | 785 | 40 | 1400 |
925 | 56 | 1 | 1 | 26 | 12 | 3300 | 67 | 2200 |
375 | 46 | 1 | 1 | 4 | 4 | 599 | 20 | 501 |
447 | 53 | 1 | 0 | 4 | 1 | 143 | 16 | 527 |
1340 | 55 | 1 | 0 | 13 | 10 | 1400 | 131 | 2900 |
1749 | 57 | 1 | 1 | 26 | 11 | 8100 | 40 | 10000 |
491 | 43 | 1 | 1 | 21 | 2 | 561 | 54 | 521 |
5299 | 64 | 1 | 0 | 42 | 13 | 2400 | 119 | 1500 |
431 | 58 | 1 | 1 | 33 | 3 | 815 | 36 | 550 |
729 | 50 | 1 | 1 | 15 | 3 | 2000 | 182 | 2600 |
1284 | 54 | 1 | 1 | 32 | 3 | 12300 | 1300 | 19600 |
1373 | 57 | 1 | 0 | 36 | 8 | 14300 | 1600 | 23600 |
989 | 40 | 1 | 0 | 18 | 5 | 439 | 30 | 582 |
515 | 52 | 1 | 1 | 27 | 1 | 1100 | 51 | 889 |
1301 | 50 | 1 | 1 | 19 | 15 | 1800 | 130 | 1600 |
834 | 58 | 1 | 0 | 35 | 1 | 4400 | 63 | 890 |
849 | 46 | 1 | 1 | 24 | 24 | 538 | 36 | 473 |
100 | 61 | 1 | 1 | 26 | 26 | 2700 | 394 | 10100 |
679 | 62 | 1 | 0 | 40 | 6 | 4900 | -463 | 1400 |
567 | 56 | 1 | 0 | 31 | 10 | 597 | 65 | 1700 |
559 | 54 | 1 | 0 | 22 | 2 | 2100 | 13 | 686 |
704 | 52 | 1 | 1 | 6 | 6 | 50 | 8 | 903 |
308 | 45 | 1 | 1 | 14 | 14 | 210 | 39 | 1900 |
1392 | 48 | 1 | 1 | 6 | 6 | 4800 | 51 | 1100 |
389 | 55 | 1 | 0 | 29 | 4 | 478 | 38 | 420 |
790 | 69 | 1 | 0 | 45 | 37 | 1200 | 140 | 3200 |
396 | 80 | 1 | 0 | 58 | 28 | 513 | 53 | 963 |
398 | 54 | 1 | 0 | 4 | 4 | 633 | 69 | 1800 |
707 | 46 | 1 | 1 | 6 | 1 | 130 | 26 | 1200 |
984 | 60 | 1 | 0 | 7 | 4 | 1500 | 135 | 1700 |
410 | 55 | 1 | 0 | 36 | 20 | 501 | 34 | 590 |
1095 | 60 | 1 | 1 | 33 | 5 | 27600 | 1400 | 17100 |
694 | 61 | 1 | 1 | 35 | 19 | 4200 | 75 | 1000 |
834 | 61 | 1 | 1 | 32 | 0 | 7600 | 364 | 5300 |
1630 | 39 | 1 | 1 | 8 | 8 | 227 | 27 | 822 |
493 | 55 | 1 | 1 | 4 | 1 | 1300 | 80 | 834 |
625 | 57 | 0 | 0 | 36 | 9 | 1400 | 87 | 979 |
483 | 52 | 1 | 1 | 18 | 14 | 1000 | 35 | 548 |
733 | 60 | 1 | 0 | 8 | 8 | 347 | 18 | 778 |
2102 | 67 | 1 | 1 | 41 | 20 | 10300 | 1700 | 45400 |
853 | 58 | 1 | 0 | 34 | 34 | 818 | 33 | 411 |
345 | 54 | 1 | 1 | 33 | 0 | 994 | 56 | 781 |
800 | 57 | 1 | 1 | 12 | 9 | 1800 | 32 | 479 |
764 | 55 | 1 | 1 | 31 | 16 | 1100 | 145 | 2100 |
806 | 59 | 1 | 1 | 3 | 3 | 3000 | 257 | 3900 |
310 | 40 | 1 | 0 | 18 | 1 | 2400 | 60 | 1300 |
1119 | 61 | 1 | 0 | 34 | 9 | 2500 | 71 | 1200 |
1287 | 59 | 1 | 1 | 4 | 3 | 4700 | 222 | 2700 |
1170 | 57 | 1 | 1 | 9 | 3 | 1900 | 208 | 5600 |
880 | 62 | 1 | 0 | 36 | 12 | 5300 | 229 | 4000 |
1091 | 33 | 1 | 0 | 9 | 9 | 181 | 36 | 1300 |
1100 | 65 | 1 | 0 | 18 | 6 | 563 | -271 | 544 |
650 | 53 | 1 | 1 | 5 | 4 | 1482 | 40 | 557 |
607 | 38 | 1 | 1 | 7 | 3 | 231 | 38 | 599 |
1133 | 63 | 1 | 0 | 9 | 9 | 870 | 37 | 686 |
393 | 58 | 1 | 1 | 36 | 6 | 285 | 40 | 956 |
605 | 53 | 1 | 0 | 16 | 4 | 422 | 30 | 505 |
1444 | 59 | 1 | 1 | 2 | 2 | 6204 | 401 | 10700 |
1033 | 62 | 1 | 1 | 30 | 1 | 5400 | 478 | 7300 |
1142 | 50 | 1 | 1 | 11 | 3 | 2600 | 166 | 2200 |
537 | 46 | 1 | 1 | 20 | 20 | 1200 | 17 | 669 |
693 | 42 | 1 | 0 | 17 | 12 | 1400 | 206 | 3000 |
439 | 57 | 1 | 1 | 26 | 12 | 2600 | 280 | 3800 |
358 | 64 | 1 | 0 | 43 | 11 | 584 | 45 | 423 |
1276 | 64 | 1 | 0 | 41 | 17 | 635 | 52 | 1300 |
873 | 41 | 1 | 1 | 2 | 2 | 149 | 21 | 567 |
537 | 57 | 1 | 1 | 35 | 1 | 11400 | 210 | 4800 |
713 | 57 | 1 | 1 | 12 | 2 | 1600 | 55 | 1300 |
1350 | 68 | 1 | 1 | 5 | 5 | 3300 | 92 | 2100 |
1268 | 47 | 1 | 0 | 20 | 4 | 1100 | 47 | 2500 |
465 | 64 | 1 | 1 | 31 | 3 | 2400 | 326 | 2400 |
693 | 46 | 1 | 1 | 7 | 3 | 2200 | 44 | 533 |
369 | 49 | 1 | 1 | 4 | 1 | 65 | -132 | 1200 |
381 | 54 | 1 | 0 | 30 | 2 | 2700 | 386 | 4500 |
467 | 49 | 1 | 1 | 13 | 0 | 513 | 49 | 534 |
559 | 57 | 1 | 1 | 34 | 16 | 605 | 56 | 653 |
218 | 57 | 1 | 1 | 33 | 5 | 504 | 41 | 421 |
264 | 63 | 1 | 0 | 42 | 3 | 334 | 43 | 480 |
185 | 58 | 1 | 0 | 39 | 1 | 766 | 49 | 560 |
387 | 71 | 1 | 1 | 32 | 13 | 432 | 28 | 477 |
2220 | 63 | 1 | 1 | 18 | 18 | 277 | -80 | 540 |
445 | 69 | 1 | 0 | 23 | 0 | 249 | 31 | 828 |
Part 1) There are 177 observations in the dataset.
The total number of variables in the dataset is 9
Part 2)
Variable |
Observations |
Mean |
Std. Dev. |
Min |
Max |
salary |
177 |
865.86 |
587.59 |
100 |
5,299 |
age |
177 |
56.43 |
8.42 |
33 |
86 |
college |
177 |
0.97 |
0.17 |
0 |
1 |
grad |
177 |
0.53 |
0.50 |
0 |
1 |
comten |
177 |
22.50 |
12.29 |
2 |
58 |
ceoten |
177 |
7.95 |
7.15 |
0 |
37 |
sales |
177 |
3529.46 |
6088.65 |
29 |
51,300 |
profits |
177 |
207.83 |
404.45 |
-463 |
2,700 |
mktval |
177 |
3600.32 |
6442.28 |
387 |
45,400 |
Part 3) There are two dummy variables in the dataset.
Part 4)
ceoten |
salary |
|
ceoten |
1 |
|
salary |
0.1429 |
1 |
As can be seen from the above table the correlation coefficient between the tenure of the CEO in the company and salary is very low (0.14) so one can say that the number of years a person stays with the company as CEO is not correlated with the salary.