Question

In: Statistics and Probability

***Use R/STATA to perform the following analysis Data: ShareValue.xlsx contains data on N=309 firms which sold...

***Use R/STATA to perform the following analysis

Data: ShareValue.xlsx contains data on N=309 firms which sold new shares. Data on the following variables is provided. All variables are measured in millions of US dollars. ShrVal is the dependent variable and the all the remaining variables are the explanatory variables.

ShareValue: the total value of all shares outstanding, calculated as the price per share times the number of shares outstanding.

FirmDebt: firm’s long-term debt

TotalSales: sales of the firm.

Net_Income: net income of the firm.

TotalAssets: book value of the assets of the firm

1. Undertake appropriate basic data analytics to motivate the regression model above.

2. Using the dataset provided, run the above described regression model and interpret all regression coefficients.

3. Do you suspect any multicollinearity problem could affect the regression coefficients?

5. Use graphical method or a test of heteroscedasticity to check for evidence of heteroscedasticity in part 2.

6. Test the following hypothesis:

(a)     Is your regression model a significant predictor of share value variations for the sample of firms you are given?

(b)     Test that increasing sales by 20 million dollars, everything else held constant, would raise the share value by at least 5 million dollars;

(c)      Test the fact that jointly, a firm’s total assets and its outstanding debts better left out of this regression (BetaTotAssets = BetaDebt =0)

Use the Breusch-Pagan test to see if there is heteroskedasticity in this regression.

Use the White test to see if there is heteroskedasticity in this regression.

You should have found that heteroskedasticity is present. Using the strategy for "Log transforming the Model" investigate whether using a “double-log model” fixes the heteroscedasticity problem? For your transformed regression, state how the coefficients should be interpreted.

Does dividing the original (“levels”) model’s all variables by the FirmDebt variable fix the heteroskedasticity problem? For your transformed regression, state how the coefficients should be interpreted.

Using heteroskedasticity consistent estimator (HCE or White robust estimator). Estimate the regression model using one HCE.

Of the regressions in questions 9, 10, 11, which would you use as your preferred specification for inclusion for this particular project?

ShareValue FirmDebt TotalSales Net_Income TotalAssets
110.8 0.4 0.1 -5.9 11.8
52.7 0.3 57.6 1.3 13.4
108.8 0.4 7.6 -8.4 14.3
26.9 4.7 27 0.3 10.8
94 72.2 163.7 3.7 131.5
252.2 4.4 82.2 4.6 16.5
42.8 2.2 44.1 1.4 24.5
42.5 13 78.9 2.8 46
81.5 128.5 157.7 -0.2 190
472.3 283.9 1619.3 9.2 743.5
768.8 425 633.6 23.2 783.1
138.9 1.5 297.3 5.6 92.7
380.6 47 144.2 28.1 118
240 6.1 0.6 -3.7 12.9
158.2 0.6 1.4 -5.2 11.2
102.9 0.3 7.4 -3.1 7.1
69.3 20.4 102.4 1 64.6
59.4 2.4 33.8 2.5 27.3
72.2 0.2 68 9.4 44.6
28.4 2.6 13.2 0.5 9.9
287.8 0.5 23 0.6 21.1
260.8 16 63.3 7.6 47.7
82.8 7.2 96.8 6.3 49.8
18 1.6 9.3 1.3 7
52.5 0.5 35.8 0.6 5.1
62.5 0.2 54.9 2.8 18
75.6 0.5 16.5 0.3 17.5
77.2 0.6 10 -2.1 5.4
71.3 35 6.6 0.8 53.1
41.7 0.1 2.3 -1.5 2.5
205.6 9.8 161.5 10.1 58.8
2623.4 968.3 175.9 -61 658.9
57.7 0.4 0.6 -6.4 5.9
59.6 0.1 0.3 -2.8 1
94.1 0.4 0.1 -3.3 4.7
163.5 1 16.7 -6.4 26.8
64 13.4 710.8 5.3 92.9
122.9 7 20.8 1.6 28.3
144.7 2.2 413.7 7.7 94.6
21.8 0.3 2.8 0.6 1.2
199.2 238.3 27.7 5 525.2
186.4 1.3 92.6 7.6 122.8
55.8 0.1 14.2 1.2 7.9
304.8 2.5 0.3 -6.4 15.7
13.7 0.2 21.9 0.9 9.1
17.6 1.3 13.6 1.2 4.7
112.3 2.5 30.2 -0.9 13
166.6 1.4 5.5 -3.7 28.1
108.1 0.7 11.1 -0.3 4.5
147.5 0.1 16.7 1.2 10
545.8 376.1 667.2 14.9 668.3
173.4 5.3 93.5 4.7 103.2
32.5 4 36.8 1.9 22.6
61.5 0.2 30 -1.8 15.9
92.2 0.3 6.7 -3.6 5.7
39.6 0.6 17.7 1.4 2.9
24.8 0.6 5.5 0.5 5
21.4 1.9 13.1 0.6 7.4
96.8 4 28.7 -0.3 57.6
68.9 5.5 26.9 0.3 21.6
120.6 14.6 119.5 -0.2 106
234.4 111.8 38.1 -10.7 139.8
152.1 18.1 113.5 6.1 79.4
42.2 1.1 84.3 0.9 28.2
64.8 0.2 46.4 2.3 19.5
92.8 25 127.6 8.6 70.3
120.6 0.2 0.3 -5.2 7.5
95.8 0.7 15 -10.1 9.3
174.2 125.7 74.7 2.8 138.2
161 2.9 50.5 2.3 25.5
304.9 0.4 22.3 1.9 17
56.2 0.2 0.2 -3.4 3.6
361.3 0.3 34.9 -1.1 22.7
37 0.4 61.4 1.9 22.5
116.9 35 131 21.2 87.4
43.5 0.3 1.7 0.2 14.4
534.9 1.3 93.6 -1.2 58.1
386.1 49.1 96.4 -15.4 104.8
253.1 4.9 44 2 34.5
184.7 0.7 15.4 0.8 11.3
168.3 2.6 130.5 1.4 34.9
120 1.1 239.4 0.8 17.8
1734 0.3 718.7 73.2 301.9
162.9 36.1 21.2 9.4 87.4
231.8 231.2 53 -64.3 310.6
788.2 360 77 36.1 1077.9
206.9 94.3 657.3 8 275
145.4 1.9 18.1 7.3 21.2
749.3 258 122.9 -58.2 468.7
76 1.3 11.2 -4.2 8.9
509.9 10.3 270.7 8.4 157.2
87.2 29.5 6.7 5.1 59.8
468.1 493.5 359.7 13.5 306.5
2682.8 96.8 207.2 14.3 231.1
166.7 49.4 27.3 11.6 124
244 3.6 54.9 5.5 57.6
173 16.5 17.5 -9.7 40.3
242.6 80.4 21.8 12.9 204.7
112.6 237.1 51.1 3.2 288.6
828.5 451.6 5006.4 33.4 1083.1
884.2 442.3 127.3 1.2 1619.2
151.5 267.1 81.3 18.1 455.7
436.8 0.3 42.7 3 55.7
67.6 0.1 83 4.1 44
82.6 0.2 80.2 3.8 56.9
616.4 0.3 118.2 10.9 142.2
242.7 0.3 62.2 11.8 1231.1
296.5 0.4 0.9 -6.9 36
1622.2 0.4 377.8 51.3 370.5
53.8 0.7 0.2 -6.1 3.9
374.2 0.8 21.2 -3.9 42.9
466.7 0.8 81 -17.2 103.5
359.7 0.9 171.2 -4.6 171.6
1132.6 1.5 75.6 19.5 136.4
891.9 2.5 253.4 11.2 128.8
338.2 2.7 63.8 -1.6 58.8
186.7 2.8 10.8 -6.1 48
68.7 2.8 4 1.4 52.8
605.8 3.3 41.6 9 92.6
942.8 6.7 147.8 11.7 192.8
366.5 7.6 119.3 22.7 157.5
334.8 9.5 20.2 0.9 302.8
1655.3 14.8 609.8 12.4 141.7
133.9 17.4 94.3 4.8 92.5
495.7 29.6 287.1 14.6 258.9
194.3 35.5 351.9 17.4 225.7
1516.7 41.8 1.1 0.6 579.2
856.4 55.9 135.1 8.7 210.4
458.3 100 293.8 23 192.6
2058.3 111.6 1085.8 -50.2 639.8
75.4 137 17.5 4.4 528.2
318.9 137.3 84.1 17.1 242.7
312.1 142.6 96.2 -6.5 235.3
681.8 178.9 387.7 33.7 416.8
760 180.7 1041.2 21.7 741.9
392.3 184.3 267.3 15.1 498.5
434.7 188.5 77.4 15 325.1
198 192 418.2 13.9 634.1
908.9 259.2 1330.9 48.9 985.5
998.2 269.6 94.8 14.5 323.5
670.6 340 1248.8 48.2 1211.5
949.9 349.4 138.9 102.4 848.6
1005.8 373.9 545.4 26.7 734.1
975.6 409.8 131.4 35 1045.6
38396.6 1112 4937 337 5469
730.6 1371.7 219.9 -1.9 584.5
5722.3 1577 4109 202 4134
1457.4 1836.4 869.1 96.7 3403.1
5397.3 1940.3 16121.5 299.7 5032.7
1486.9 2222 5905 342 4821
4024.7 3523 6804 259 9495
5449.9 4541 5465 449 11296
374 345.5 81.7 -21.7 233.1
2462.5 82.5 147.7 27.1 658.2
1048.3 3.5 4.9 -31.3 157.2
528.9 351.8 512.9 32.9 408.4
164.9 1.6 5.4 -6.9 37.6
694.7 397.7 154.8 35.4 534.8
333.8 116.1 233.3 12 251.7
312 155.2 45.9 14.4 397.4
2545.8 2004.5 2635.2 -432.3 6057
215.9 4.7 0.6 -12.6 26
473.5 3.4 106.3 18.4 88
1567.5 384.8 735.3 66.6 1154
741.6 23.3 671.4 11.3 303.7
240.4 1.8 22.4 7.2 27.4
325.4 7.1 188.9 -5.4 124
259.6 121.6 170.1 22.4 1873.8
486 74.7 102.5 43 911
874.9 207.3 499.4 73.1 3150
672.7 0.5 176.7 14.6 108.5
991.3 12.5 205.6 19.3 244.6
1039.5 1.5 101.7 7.5 74.3
306.5 24.5 346.3 24.5 320.5
56.3 1.5 245.9 2.1 82.4
182.5 6 8.9 0.4 26.2
830 310.4 982 39.1 767.9
484.8 236.6 231.8 8.3 188.3
76.2 1.8 84.9 6.1 44
409.7 6.4 25.2 -5 55.2
79.3 23.2 156.8 -5.7 127.5
501.8 86.3 432.5 9.5 206
176 9.5 664.1 7.9 155.1
1064.3 15.4 60.7 -32.6 147
215.3 68.8 300.2 -7.2 1132.8
1886.1 222.5 807.2 61.4 660
304.1 231.8 54.5 20.1 449.5
1335.6 1338.4 3494.3 74.4 3687.8
1571.7 0.7 11.4 -23 78.1
108.9 142.5 80.7 5.9 224.1
150.5 1.5 139.7 7.1 75.3
2390.7 146.8 1047.7 85.7 1276.5
165.2 262.5 39.8 8.2 378.5
452.4 1.3 8.8 -29.4 44.9
136.1 0.1 73.8 2.8 40.2
217.7 0.5 1.3 -18 47
252.9 1 94.8 3.9 39.4
78.1 2.6 0.9 -10.2 17.4
88.8 0.2 22.7 2.5 73.1
7415.8 554.4 763.3 142.7 1398.1
156.4 4.2 19.2 2 48.7
1318.8 24 510.6 48.7 1792.2
233.2 105.1 84.1 1 354.2
389.1 63.4 188.2 17 268
3201.6 466.2 317.8 25.1 595
312.9 38.3 119.7 4.9 181
1080 154.4 234.4 14.2 355.1
495 25.9 890 18.4 363.8
182.2 134.3 532.4 11.6 305.6
835.7 57.7 496.6 18.8 305.7
1626 82.7 399.6 24.8 360.8
609.4 8 183 10.8 196
988.2 335.9 201 24 447.3
482.5 2 2.7 -10.2 27.3
1111.2 375.4 353.4 12.6 755.6
927.6 42.1 336.5 21.6 173.6
52.3 0.9 5.1 -6.1 13.3
123 123.1 55.9 -16.7 178.7
567.8 315.3 133 -3.4 466
236.2 0.5 110 -32.7 72.7
266.7 26.5 37.4 17.6 225.1
763.1 243.2 388.2 38.5 295.8
188.3 7.8 328.7 8.9 152.9
790.4 344.4 442 26.6 1064.8
570.5 2384 565 -82 3557
1442.9 354.1 2732.1 101.1 1213.7
2418.3 0.4 51.7 -3.8 122.2
1072.7 118.5 949.8 78.7 7594.8
87.2 9.4 97.5 2.9 42.9
466 9.7 41.8 -11.5 100.3
608.5 16 350.9 20.3 254
308 1.8 104.9 7 40.6
953 116.5 3155 35.4 558.8
315.7 9.7 132.9 16.1 119.4
416 2295 130.6 9.6 137
276.7 241.4 157.9 -25.4 230.8
221.6 10.1 40.4 1.5 38.7
83.1 20.2 38.7 10.6 133.5
137.3 57.8 70.2 -8.4 139.5
167.7 210 83.1 11.4 277.2
277.7 163.7 1082.2 16.1 379.1
353.9 70 155.9 27.2 687.5
643.3 0.2 0.5 -11.7 11.3
171.9 0.5 22.5 2.2 31.5
305.6 42.4 21.8 4.9 173.4
926.2 7 137.3 23.3 204.6
559.2 346.2 87.9 16.7 737.6
43 0.1 16 1.9 14.6
448.1 79.8 79.5 32.8 842.6
968 27.7 641.1 53.3 1130.9
712.4 68.7 209.1 17 141.4
104.9 0.6 14.9 -1.4 6.8
288.3 125.2 128 9.9 216.1
323.6 144.9 161.7 1.5 418371
161.3 1.6 17.3 2.2 22.8
323.9 2 47.1 2.7 43.9
51.4 2.4 18.6 1.4 22.4
227.8 65.7 576.3 28.2 316.7
125.9 2.2 0.9 -5.2 15.5
120.6 0.1 32.8 1.3 26.5
1415.9 2.8 83.2 -2.1 64.4
456.8 0.7 57.1 3.6 108.4
324.1 282.8 729.4 17 824.2
289.8 0.4 58.5 3.5 23.2
759 139.9 21.3 1.7 73.6
218.4 1.2 11.8 0.4 11.7
100.1 6.9 143.9 7 36
77.3 41.2 130.4 4.2 100.3
356.4 1.2 1 -10.8 24.1
69.9 3.5 8.8 -12.9 29.1
139.8 0.8 36.2 5.8 32.8
307.2 22.6 41.4 4.6 90.8
2047.3 143.3 78.9 -57.1 260.3
53.2 7.2 22 0.6 16.5
656.3 250 924.6 28.1 1512.9
167.8 0.7 9.6 -3.3 10.6
1253.1 2.9 634.5 33.1 247.5
34.8 0.1 38.2 -0.6 18.1
20.7 20.1 59.6 1.3 16.4
76.4 0.8 19.9 -1.4 9.4
372.7 2 27.4 -22.7 57.3
73.7 1.2 78.2 -1.4 40.9
226 0.1 25.6 3.7 24
79.2 0.9 7.2 2 9.6
36.2 241.8 49.7 6.2 608.4
184.5 9.9 3.1 -20.7 43.8
333 5.9 819.4 6.6 259.6
67.3 1.2 10 -1.9 4.3
277.2 1.5 125.4 -1.5 48.9
388.2 219.9 210.5 -7.6 304.7
841.6 0.1 19.7 16.9 51.3
52.3 1.6 19.7 -4.4 22.4
176.4 1.1 3.8 -8.7 11.6
87.6 5.1 25.4 1.3 40.7
267.4 0.1 117.9 -16.4 65.1
21.7 0.8 5.8 -11.3 9.8
696.7 353.9 91.3 -20.1 125.9
638.4 125 415.6 7.1 347.6
146.5 3.7 211.8 8.4 88.7
103.6 0.7 25.3 1 12
37.1 2.1 4.6 -4 11
219.1 48.2 306.1 10.4 167.4
138.4 1.4 1.7 -5.8 22.3
257.9 0.7 69.7 -8.3 79.5
4341.6 46 508.1 20.1 341.4
140.8 5.1 26.3 4.1 35.9
136.2 13.5 1034.9 4.6 281.9
73.2 0.2 5.6 -5.7 4.7
219.2 2.5 31.6 4.7 59.6

Solutions

Expert Solution

1.)

data=read.csv(file.choose())# to read the given data.
y=data$ShareValue # response variable of regression.
x1=data$FirmDebt  
x2=data$TotalSales # x1,x2,x3,x4 are the corresponding regressor variable
x3=data$Net_Income
x4=data$TotalAssets
l=lm(y~x1+x2+x3+x4)
l

Output:

Call:
lm(formula = y ~ x1 + x2 + x3 + x4)

Coefficients:
(Intercept) x1 x2 x3 x4  
3.408e+02 1.608e-01 2.984e-01 1.552e+01 1.844e-04  

# the value of the coefficients are given in the above.

2.) and 3.)

summary(l)

Output:

> summary(l)

Call:
lm(formula = y ~ x1 + x2 + x3 + x4)

Residuals:
Min 1Q Median 3Q Max
-6282.1 -337.9 -219.5 30.3 31172.3

Coefficients:
Estimate Std. Error t value Pr(>|t|)   
(Intercept) 3.408e+02 1.221e+02 2.791 0.00558 **
x1 1.608e-01 3.277e-01 0.491 0.62409   
x2 2.984e-01 1.366e-01 2.184 0.02970 *  
x3 1.552e+01 2.698e+00 5.753 2.14e-08 ***
x4 1.844e-04 4.838e-03 0.038 0.96962   
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2020 on 304 degrees of freedom
Multiple R-squared: 0.2548, Adjusted R-squared: 0.245
F-statistic: 25.99 on 4 and 304 DF, p-value: < 2.2e-16

## from the above table the if we observe the p-value , then it is clear that when we test the equality of regression coefficients with zero i,e H_o: b_i=0,(where b_i are the four regression coefficients ) then all the test is not significant. star marks(*, **, ***) are significant at level of significance 0.05. Hence, multicolinearity may present into the data set .

## On the other hand presence of multicolinearity can be tested by Condition number= where is the eigen value of the matrix () where is the data matrix . =(FirmDebt,TotalSales,Net_Income,TotalAssets). Multicolinearity present into the dataset if condition no>20.

r-code:

X=cbind(x1,x2,x3,x4)
eigen(t(X)%*%X)

output:

eigen() decomposition
$values
[1] 175539557562 539739405 37893909 559859

$vectors
[,1] [,2] [,3] [,4]
[1,] -1.290562e-03 -0.267242591 0.9633580959 -2.282347e-02
[2,] -2.433285e-03 -0.963218961 -0.2677453013 -2.271050e-02
[3,] -8.054405e-05 -0.027989111 0.0159148032 9.994815e-01
[4,] -9.999962e-01 0.002690944 -0.0005930566 4.213941e-06

### now highest eigenvalu=175539557562 and smallest eigen value= 559859

and condition no =559 which implies presence of multicolinearity.

5.)

Breusch-Pagan test: is given by the plot of residual of the reagression with y variable . If there is a pattern into the graph Heteroscadasticity present into the data set.

## Breusch-Pagan test##
r=resid(l)
plot(r,y)

6.)

a) from the first table we already see that p-value< 0.05.

output:

Residual standard error: 2020 on 304 degrees of freedom
Multiple R-squared: 0.2548, Adjusted R-squared: 0.245
F-statistic: 25.99 on 4 and 304 DF, p-value: < 2.2e-16.

#hence predictor is significant.

b) coefficints of x2=

2.984e-01

hence keeping all unit fixed increase 1 unit sales implies 2.984e-01 unit increse in share value. therefore 20 unit inrease in sale implies 20* 2.984e-01=23(approx).hence increasing sale implies increasing share value at least 5 unit is possible.


Related Solutions

** Use R for the following analysis. Use the BoneAcid.xlsx data to check what is causing...
** Use R for the following analysis. Use the BoneAcid.xlsx data to check what is causing the variation in the acid content in bones among 42 male skeletons from 2 cemeteries. The independent variables included are internment lengths, ages, depths, lime addition and contamination in soil. Variables/Columns Burial Site   (1 or 2) Internment Time (Years) Burial Depth (feet)    LimeAdded (at internment) (1=Yes, 0=No) Death_Age (Age of Person at the time of death) Acid Level (g/100g of bone) Contamination (In soil)...
pl use r studio to do that What is the most appropriate analysis to perform on...
pl use r studio to do that What is the most appropriate analysis to perform on the following data?   x<-c(8.1, 9.4, 9.9, 9.6, 10.7, 10.2, 10.4, 13.6, 15.5, 17.8) Y<-c(7.3, 8.6, 9.9, 9.6, 9.3, 9.2, 10.9, 10.7, 11.4, 16.1) Determine Spearman’s Rho coefficient (2dp) for the following data. x<-c(56,56,65,65,50,25,87,44,35) y<-c(87,91,85,91,75,28,122,66,58)
Question #11 – Regression Analysis Use the data provided to: Perform the “Tests to Check the...
Question #11 – Regression Analysis Use the data provided to: Perform the “Tests to Check the Validity of a Regression” Show both the calculated and critical values Estimate Y when X = 4 (round to 2 decimal places) Use a level of significance of 5% (α = .05). Clearly show the null and alternate hypothesis. Graphs are not required. X Y 3 14 7 26 6 23 4 17 7 28 5 20 8 29 2 11
i. Use MS Excel Data Analysis ToolPak to perform a multiple regression analysis using Quality as...
i. Use MS Excel Data Analysis ToolPak to perform a multiple regression analysis using Quality as the response variable and Helpfulness and Clarity as the explanatory variables. Write down the corresponding coefficient estimates and provide the regression output. j. Perform an F-test for the overall usefulness of the model in part i) using a 5% significance level. Make sure you follow all the steps for hypothesis testing indicated in the Instructions section and clearly state your conclusion. k. Test manually...
FIRST PART: The Stata file ceosalary.dta contains data on the characteristics of 177 chief executive o?cers,...
FIRST PART: The Stata file ceosalary.dta contains data on the characteristics of 177 chief executive o?cers, which we will use to examine the e?ects of firm performance on CEO salary. The variables in the dataset include 1. salary (1990 compensation, $1000s), 2. age (in years), 3. college (=1 if attended college), 4. grad (=1 if attended graduate school), 5. comten (years with company), 6. ceoten (years as ceo with company), 7. sales (1990 firm sales, millions), 8. profits (1990 profits,...
Perform the following tasks on R Studio/R Construct a function called conv3 which inputs a measurement...
Perform the following tasks on R Studio/R Construct a function called conv3 which inputs a measurement in centimeters and outputs the corresponding measurement in inches. However, if a negative value is entered as an input, no conversion of unit is done and an error message is printed instead.
Multivariate analysis Using the data provided, perform the following analysis: Determine the explanatory and response variables....
Multivariate analysis Using the data provided, perform the following analysis: Determine the explanatory and response variables. Run a multivariate regression analysis on all three variables. Interpret the results by answering the following questions: What is the calculated correlation coefficient? Do the sales figures correlate with the marketing expenditure and price? Comment on the coefficient of determination. What percentage of the response data can be explained by the explanatory variables? Determine the multiple regression line equation in the form: sales^ =...
Which of the following items are sold by firms in monopolistic competition in a developed economy...
Which of the following items are sold by firms in monopolistic competition in a developed economy such as the U.S? Explain your selection. Potato chips Television Airplane Battery Rice Why do Coca-Cola and PepsiCo spend huge amounts on advertising? Do they benefit? Does the consumer benefit? Explain your answer by constructing a game to illustrate the choices Coca-Cola and PepsiCo make.
In this problem, we will perform multiple regression on the Boston housing data. The data contains...
In this problem, we will perform multiple regression on the Boston housing data. The data contains 506 records with 14 variables. The variable medv is the response variable. Solve the following problems in R and print out the commands and outputs : To assess the data use library(MASS) data(Boston) (a) First perform a multiple regression with all the variables, what can you say about the significance of the variables based on only the p-values. Next use the ”step” function to...
Use the Program R: The following data gives the weight for 8 corn cobs which were...
Use the Program R: The following data gives the weight for 8 corn cobs which were produced using an organic corn fertilizer: 212, 234, 259, 189, 245, 176, 203, 215 (a) For this sample of n = 8 observations, use R to obtain the mean, the median, the interquartile range and the standard deviation. (b) Among the four statistics, which are measures of central tendency and which are measures of dispersion. (c) Are there any outliers in this sample? If...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT