Question

In: Computer Science

Determine the representation for the following decimal numbers in single-precision IEEE 754 format. Give them in...

Determine the representation for the following decimal numbers in single-precision IEEE 754 format. Give them in 32-bit binary and show the calculation.

-10^(−8)

Solutions

Expert Solution

single-precision IEEE 754 format:
1:sign bit
8:exponent bits
23:mantissa bits
total :32 bits
------------------------------------
now,
converting -10^(-8)= -0.00000001 to 32 bit single-precision IEEE 754 format:
1)
sign bit value is :1 //since given number is negative
2)
converting 0.00000001 to binary:0.00000000101010111100110001110111000100011000010001100001110100
3)
Normalizing:(changing number so that, there is only one 1 before decimal point)
0.00000000101010111100110001110111000100011000010001100001110100 => 1.01010111100110001110111000100011000010001100001110100
//9 bits shifted left
3)Mantissa: the part after the decimal point is mantissa(upto 23 bits, if less then padd 0's, if more then ignore remaining)
01010111100110001110111
4)Exponent: 127 + (sign shifted number of bits) //sign is - for left shift, + for right shift
127 + (- 9) = 116
116 to binary : 01110100
------------------------------------
Result:
sign|Exponent| Mantissa
1 |01110100| 01010111100110001110111


Related Solutions

convert 0xC2000000 into IEEE-754 single precision decimal format.
convert 0xC2000000 into IEEE-754 single precision decimal format.
convert 0xC2000000 into IEEE-754 single precision decimal format.
convert 0xC2000000 into IEEE-754 single precision decimal format.
convert 0xC2000000 into IEEE-754 single precision decimal format.
convert 0xC2000000 into IEEE-754 single precision decimal format.
6 – Assuming single precision IEEE 754 format, what decimal number is represent by the following...
6 – Assuming single precision IEEE 754 format, what decimal number is represent by the following 32-bit binary word? 1 10001000 10010000000000000000000
Write the binary representation of the decimal number -64 (negative 64) Assuming IEEE 754 single precision...
Write the binary representation of the decimal number -64 (negative 64) Assuming IEEE 754 single precision format Assuming 8-bit 2’s complement representation Assuming signed magnitude representation
write value of PI(3.14159) in IEEE-754 single-precision format
write value of PI(3.14159) in IEEE-754 single-precision format
Convert the following decimal numbers into their 32-bit floating point representation (IEEE single precision). You may...
Convert the following decimal numbers into their 32-bit floating point representation (IEEE single precision). You may use a calculator to do the required multiplications, but you must show your work, not just the solution. 1. -59.75 (ANSW: 11000010011011110000000000000000) 2. 0.3 (ANSW: 00111110100110011001100110011010 (rounded) 00111110100110011001100110011001 (truncated; either answer is fine)) Please show all work
Using IEEE 754 single precision floating point, write the hexadecimal representation for each of the following:...
Using IEEE 754 single precision floating point, write the hexadecimal representation for each of the following: a. Zero b. -2.0 (base 10) c. 256. 0078125 (base 10) d. Negative infinity
For IEEE 754 single-precision floating point, what is the hexadecimal representation of 27.101562? A. 35CCD001 B....
For IEEE 754 single-precision floating point, what is the hexadecimal representation of 27.101562? A. 35CCD001 B. 2F5C10D0 C. 41D8D000 D. 7DCA1111 E. None of the above
Show the IEEE 754 binary representation of the number -0.25(subscript)ten in single and double precision. List...
Show the IEEE 754 binary representation of the number -0.25(subscript)ten in single and double precision. List all the steps required to get the single and double precision.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT