Question

In: Computer Science

Determine the representation for the following decimal numbers in single-precision IEEE 754 format. Give them in...

Determine the representation for the following decimal numbers in single-precision IEEE 754 format. Give them in 32-bit binary and show the calculation.

-10^(−8)

Solutions

Expert Solution

single-precision IEEE 754 format:
1:sign bit
8:exponent bits
23:mantissa bits
total :32 bits
------------------------------------
now,
converting -10^(-8)= -0.00000001 to 32 bit single-precision IEEE 754 format:
1)
sign bit value is :1 //since given number is negative
2)
converting 0.00000001 to binary:0.00000000101010111100110001110111000100011000010001100001110100
3)
Normalizing:(changing number so that, there is only one 1 before decimal point)
0.00000000101010111100110001110111000100011000010001100001110100 => 1.01010111100110001110111000100011000010001100001110100
//9 bits shifted left
3)Mantissa: the part after the decimal point is mantissa(upto 23 bits, if less then padd 0's, if more then ignore remaining)
01010111100110001110111
4)Exponent: 127 + (sign shifted number of bits) //sign is - for left shift, + for right shift
127 + (- 9) = 116
116 to binary : 01110100
------------------------------------
Result:
sign|Exponent| Mantissa
1 |01110100| 01010111100110001110111


Related Solutions

6 – Assuming single precision IEEE 754 format, what decimal number is represent by the following...
6 – Assuming single precision IEEE 754 format, what decimal number is represent by the following 32-bit binary word? 1 10001000 10010000000000000000000
Using IEEE 754 single precision floating point, write the hexadecimal representation for each of the following:...
Using IEEE 754 single precision floating point, write the hexadecimal representation for each of the following: a. Zero b. -2.0 (base 10) c. 256. 0078125 (base 10) d. Negative infinity
For IEEE 754 single-precision floating point, what is the hexadecimal representation of 27.101562? A. 35CCD001 B....
For IEEE 754 single-precision floating point, what is the hexadecimal representation of 27.101562? A. 35CCD001 B. 2F5C10D0 C. 41D8D000 D. 7DCA1111 E. None of the above
Show the IEEE 754 binary representation of the number -0.25(subscript)ten in single and double precision. List...
Show the IEEE 754 binary representation of the number -0.25(subscript)ten in single and double precision. List all the steps required to get the single and double precision.
Convert 1101.11011101 x 223 to IEEE Standard 754 for single-precision floating-point binary format. Convert the IEEE...
Convert 1101.11011101 x 223 to IEEE Standard 754 for single-precision floating-point binary format. Convert the IEEE Standard 754 number 11001010100011010101000000000000 to its decimal equivalent.
Represent the following decimal numbers using IEEE-754 floating point representation. A. -0.375 B. -Infinity C. 17...
Represent the following decimal numbers using IEEE-754 floating point representation. A. -0.375 B. -Infinity C. 17 D. 5.25
Given the following 32-bit binary sequences representing single precision IEEE 754 floating point numbers: a =...
Given the following 32-bit binary sequences representing single precision IEEE 754 floating point numbers: a = 0100 0000 1101 1000 0000 0000 0000 0000 b = 1011 1110 1110 0000 0000 0000 0000 0000 Perform the following arithmetic and show the results in both normalized binary format and IEEE 754 single-precision format. Show your steps. a)     a + b b)     a × b
Express the following two base 10 numbers in binary using the IEEE 754 single-precision floating point...
Express the following two base 10 numbers in binary using the IEEE 754 single-precision floating point format (i.e., 32 bits). Express your final answer in hexadecimal (e.g., 32’h????????). a) 68.3125 b) -19.675
Determine the IEEE single and double floating point representation of the following numbers: a) -26.25 b)...
Determine the IEEE single and double floating point representation of the following numbers: a) -26.25 b) 15/2
A) Convert 1101.11011101 x 223 to IEEE Standard 754 for single precision floating-point binary format. B)...
A) Convert 1101.11011101 x 223 to IEEE Standard 754 for single precision floating-point binary format. B) Convert the IEEE Standard 754 number 11001010100011010101000000000000 to its decimal equivalent.  
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT