In: Math
4.
A simple random sample of 800 elements generates a sample proportion j5 =
.70.
a.
Provide a 90% confidence interval for the population proportion.
b.
Provide a 95% confidence interval for the population proportion.
a)
Given that,
n = 800
= 0.70
1 - = 1 - 0.70= 0.30
At 90% confidence level the z is ,
= 1 - 90% = 1 - 0.90= 0.1
/ 2 = 0.1 / 2 = 0.05
Z/2 = Z0.05 = 1.645
Margin of error = E = Z / 2 * [( * (1 - )] / n)
= 1.645 * {[(0.70*0.30)] / 800}
= 0.0267
A 90% confidence interval for population proportion p is ,
- E < P < + E
0.70 - 0.0267 < p < 0.70 + 0.0267
0.6733 < p < 0.7267
0.67 < p < 0.73
b)
n = 800
= 0.70
1 - = 1 - 0.70= 0.30
At 95% confidence level the z is ,
= 1 - 95% = 1 - 0.95= 0.05
/ 2 = 0.05 / 2 = 0.025
Z/2 = Z0.025 = 1.96
Margin of error = E = Z / 2 * [( * (1 - )] / n)
= 1.96* {[(0.70*0.30)] / 800}
= 0.0318
A 90% confidence interval for population proportion p is ,
- E < P < + E
0.70 - 0.0318< p < 0.70 + 0.0318
0.6682< p < 0.7318
0.67< p < 0.73