In: Statistics and Probability
A simple random sample of 1000 elements generates a sample proportion p =0.68
a. Provide the confidence interval for the population proportion (to 4 decimals). ,
( , )
b. Provide the confidence interval for the population proportion (to 4 decimals). ,
( , )
CONFIDENCE INTERVAL IS NOT GIVEN SO WE ASSUME FOR PART A-99% AND FOR PARTB-90%
a)
Level
of Significance, α = 1- 0.99= 0.01
Sample Size, n = 1000
Sample Proportion , p̂ = 0.68
z -value = "Zα/2 = 2.5758 FROM CRITICAL VALUE TABLE
Standard Error , SE = √[p̂(1-p̂)/n] = 0.01475
margin of error , E = Z*SE = 0.0380
Confidence Interval
Interval Lower Limit , = p̂ - E =
0.6420
Interval Upper Limit , = p̂ + E =
0.7180
b)
Level
of Significance, α =1- 0.90 = 0.1
Sample Size, n = 1000
Sample Proportion , p̂ = 0.68
z -value = "Zα/2 =1.6449
Standard Error , SE = √[p̂(1-p̂)/n] =
0.01475
margin of error , E = Z*SE = 0.0243
Confidence Interval
Interval Lower Limit , = p̂ - E =
0.6557
Interval Upper Limit , = p̂ + E =
0.7043