In: Statistics and Probability
A simple random sample of 500 elements generates a sample proportion p = 0.72
a. Provide the 99% confidence interval for the population proportion (to 4 decimals).
( , )
b. Provide the 90% confidence interval for the population proportion (to 4 decimals).
( , )
a)
Level of Significance, α =
0.01
Sample Size, n = 500
Sample Proportion , p̂ =
0.720
z -value = "Zα/2 =
" 2.5758 [excel formula =NORMSINV(α/2)]
Standard Error , SE = √[p̂(1-p̂)/n] =
0.0201
margin of error , E = Z*SE =
0.0517
Confidence Interval
Interval Lower Limit , = p̂ - E =
0.6683
Interval Upper Limit , = p̂ + E = 0.7717
b)
Level of Significance, α =
0.1
Sample Size, n = 500
Sample Proportion , p̂ =
0.720
z -value = "Zα/2 =
" 1.6449 [excel formula =NORMSINV(α/2)]
Standard Error , SE = √[p̂(1-p̂)/n] =
0.0201
margin of error , E = Z*SE =
0.0330
Confidence Interval
Interval Lower Limit , = p̂ - E =
0.6870
Interval Upper Limit , = p̂ + E =
0.7530