In: Computer Science
Give a formal proof for the following tautology by using the IP rule.
(A →B) ^ (B →C) →(A v B →C)
Given (A B) (B C) (A V B C)
(¬A VB) (¬B VC) [¬(A V B) V C] { Law of Implies (PQ) = ¬PVQ }
[¬ {(¬A VB) (¬B VC) }] V [¬(A V B) V C] { Law of Implies (PQ) = ¬PVQ }
[ {¬(¬A VB) V ¬(¬B VC) }] V [(¬A ¬B) V C] {By De Morgan's law ¬ (PVQ) = ¬P ¬Q}
[ {(¬(¬A) ¬B) V (¬(¬B) ¬C) }] V [(¬A ¬B) V C] {By De Morgan's law ¬ (PVQ) = ¬P ¬Q}
[ {(A ¬B) V (B ¬C) }] V [(¬A ¬B) V C] {By De Morgan's law ¬ (¬ P) = P }
[ (A ¬B) V (B ¬C) ] V [C V (¬A ¬B)] { Commutative law P V Q = Q V P }
A [(¬B V B) (¬C V C)] V (¬A ¬B) {Associative law (A V B) V C = A V (B V C)}
A (¬A ¬B) V [(¬B V B) (¬C V C)] { Commutative law P Q = Q P }
A (¬A ¬B) V [(T) (T)] {We know that P V ¬ P = T}
(A ¬A) ¬B V [ (T) ] {We know that T T = T}
(F) ¬B V T {We know that P ¬P = F}
(F ¬B) V T {Associative law (A V B) V C = A V (B V C)}
(F) V T {We know that F ¬P = F}
T
Tautology