Question

In: Physics

1. A 3.0cm tall object is located 5.0cm from a converging lens that has a focal...

1. A 3.0cm tall object is located 5.0cm from a converging lens that has a focal length of 10.0cm. What is the magnification of the image?

a. M= 0.500

b. M= -0.500

c.M= 2.0

d. M= -2.0

e. none of the above

2. A bird is flying above the water when it spots a fish a few meters ahead in a direction about 30 degrees below the horizontal (the bird is not directly over the fish). The bird is hungry, and dives towards the water. In order to catch the fish, the bird should aim ____

a. above where the fish appears.

b. below where the fish appears.

c.precisely where the fish appears.

3.  A convex mirror forms an image of a real object. Which of the following statements is true?

a.The image is real, upright and larger than the object.

b. The image is real, upright, and smaller than the object.

c. The image is virtual, upright and larger than the object.

d. The image is virtual, upright and smaller than the object.

e. The image is virtual, upright, and can be larger or smaller than the object

Solutions

Expert Solution

1)We have
     
Given that ,
     

magnification

is the magnification

the height of the image will be   

------------------------------------------------------------------------------------------------------------------------------

Therefore the fish should below where the fish appears

--------------------------------------------------------------------------------------------------------------------------------

The image formed by a Convex mirror is always VIRTUAL , UP RIGHT and SMALLER than the object


Related Solutions

A 1.4-cm-tall object is located 3.0cm to the left of a converging lens with a focal...
A 1.4-cm-tall object is located 3.0cm to the left of a converging lens with a focal length of 4.0cm . A diverging lens, of focal length -7.4cm, is 14cm to the right of the first lens. Find the position of the final image. s2` = -5.7 cm Find the size of the final image. h2` = ? Find the orientation of the final image. a) real, upright b) real, inverted c) virtual, upright d) virtual, inverted
an object 3.0cm high object is place 4.0cm in front of a converging lens with a...
an object 3.0cm high object is place 4.0cm in front of a converging lens with a focal length of 8.0cm. the object is located on the principal axis. part 1. the image that will be formed will be . real, virtual or neither? part 2. the image will be loacted on the same side of the lens at a distance of __ from the lens? part 3. the magnification of the image will be ? part 4. the size of...
1.20cm tall object is 50.0cm to the left of a diverging lens (lens 1) of focal...
1.20cm tall object is 50.0cm to the left of a diverging lens (lens 1) of focal length of magnitude 40.0cm. A second converging lens (lens 2) of focal length 60.0cm, is located 300cm to the right of the first lens along the same optic axis. (a)Calculate the location of the image (call it I1) formed by the lens1. (b) Is image I1 real or virtual? (c) Is image I1 on left side or right side of lens 1? (d) Calculate...
A converging lens has a focal length of 15 cm. If an object is placed at...
A converging lens has a focal length of 15 cm. If an object is placed at a distance of 5 cm from the lens, a. find the image position d i = _____ cm (include sign +/-) b. find the magnification M = _____(include sign +/-) c. characterize the resulting image. ________(real or virtual) ________(enlarged or reduced) ________(upright or inverted)
A converging lens has a focal length of 21.1 cm. (a) Locate the object if a...
A converging lens has a focal length of 21.1 cm. (a) Locate the object if a real image is located at a distance from the lens of 63.3 cm. distance cm location (b) Locate the object if a real image is located at a distance from the lens of 105.5 cm. distance cm location (c) Locate the object if a virtual image is located at a distance from the lens of -63.3 cm. distance cm location (d) Locate the object...
1. An object is 30 cm in front of a converging lens with a focal length...
1. An object is 30 cm in front of a converging lens with a focal length of 10 cm. Use ray tracing to determine the location of the image. Is the image upright or inverted? Is it real or virtual? 2. An object is 6.0 cm in front of a converging lens with a focal length of 10 cm. Use ray tracing to determine the location of the image. Is the image upright or inverted? Is it real or virtual?...
An object is placed 4.0cm from a thin converging lens with a focal length of 12cm....
An object is placed 4.0cm from a thin converging lens with a focal length of 12cm. What are the properties of the image?
A converging lens has a focal length of 9.0 cm. Locate the images for the object...
A converging lens has a focal length of 9.0 cm. Locate the images for the object distances of (a) 20.0 cm, (b) 10.0 cm, and (c) 5.00 cm, if they exist. For each case, state whether the image is real or virtual, upright or inverted, and find the magnification.
An object 1cm tall is placed at 4cm from a convex lens with a focal length...
An object 1cm tall is placed at 4cm from a convex lens with a focal length of 6cm. A convex mirror with a focal length of 4cm is situated 10cm from the convex lens. A)Using the thin lens equation calculate the location of the image. B)Describe the image using three of the following words; virtual, real , smaller, bigger, non-inverted, inverted. YOUR HELP WILL BE APPRECIATED !!
a) The focal length of a converging lens is 35 cm. An object is placed 100...
a) The focal length of a converging lens is 35 cm. An object is placed 100 cm in front of the lens. Describe the image. b) The focal length of a converging lens is 35 cm. An object is placed 30 cm in front of the lens. Describe the image. c) The focal length of a diverging lens is 35 cm. An object is placed 100 cm in front of the lens. Describe the image. d) The focal length of...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT