Question

In: Physics

1. An object is 30 cm in front of a converging lens with a focal length...

1. An object is 30 cm in front of a converging lens with a focal length of 10 cm. Use ray tracing to

determine the location of the image. Is the image upright or inverted? Is it real or virtual?

2. An object is 6.0 cm in front of a converging lens with a focal length of 10 cm. Use ray tracing to

determine the location of the image. Is the image upright or inverted? Is it real or virtual?

3. An object is 20 cm in front of a diverging lens with a focal length of 10 cm. Use ray tracing to

determine the location of the image. Is the image upright or inverted? Is it real or virtual?

4. An object is 15 cm in front of a diverging lens with a focal length of 10 cm. Use ray tracing to

determine the location of the image. Is the image upright or inverted? Is it real or virtual?

Solutions

Expert Solution


Related Solutions

A converging lens has a focal length of 15 cm. If an object is placed at...
A converging lens has a focal length of 15 cm. If an object is placed at a distance of 5 cm from the lens, a. find the image position d i = _____ cm (include sign +/-) b. find the magnification M = _____(include sign +/-) c. characterize the resulting image. ________(real or virtual) ________(enlarged or reduced) ________(upright or inverted)
a) The focal length of a converging lens is 35 cm. An object is placed 100...
a) The focal length of a converging lens is 35 cm. An object is placed 100 cm in front of the lens. Describe the image. b) The focal length of a converging lens is 35 cm. An object is placed 30 cm in front of the lens. Describe the image. c) The focal length of a diverging lens is 35 cm. An object is placed 100 cm in front of the lens. Describe the image. d) The focal length of...
An object is placed 49 cm to the left of a converging lens of focal length...
An object is placed 49 cm to the left of a converging lens of focal length 21 cm. A diverging lens of focal length − 29 cm is located 10.3 cm to the right of the first lens. (Consider the lenses as thin lenses). a) Where is the final image with respect to the second lens? b)What is the linear magnification of the final image?
A converging lens has a focal length of 21.1 cm. (a) Locate the object if a...
A converging lens has a focal length of 21.1 cm. (a) Locate the object if a real image is located at a distance from the lens of 63.3 cm. distance cm location (b) Locate the object if a real image is located at a distance from the lens of 105.5 cm. distance cm location (c) Locate the object if a virtual image is located at a distance from the lens of -63.3 cm. distance cm location (d) Locate the object...
An object is placed 35.5 cm to the left of a converging lens of focal length...
An object is placed 35.5 cm to the left of a converging lens of focal length 18.8 cm. A second lens, which is diverging and has a focal length of -88.8 cm is placed at a certain distance d to the right of the first lens. A) where is the image of the object formed by the first lens and what is its magnification? B) If the distance d=53.6 cm, where is the final image of the object? What are...
An object is placed 12 cm in front of a diverging lens with a focal length...
An object is placed 12 cm in front of a diverging lens with a focal length of 7.9 cm. (a) Find the image distance and determine whether the image is real or virtual. (b) Find the magnification
Set the focal length of the converging lens to 3.0 cm and the object height 2.0...
Set the focal length of the converging lens to 3.0 cm and the object height 2.0 cm. Start with the object distance at 8.0 cm. What happens to the image position and image height as the object distance is increased to 10.0 cm? What happens to the image position and image height as the object distance is decreased to 6.0 cm? 3. Next we’ll investigate images formed when the object is closer to the lens than the focal point. Set...
A converging lens has a focal length of 9.0 cm. Locate the images for the object...
A converging lens has a focal length of 9.0 cm. Locate the images for the object distances of (a) 20.0 cm, (b) 10.0 cm, and (c) 5.00 cm, if they exist. For each case, state whether the image is real or virtual, upright or inverted, and find the magnification.
Lens 1, in a two-lens system, is converging with a focal length +15.0 cm and Lens...
Lens 1, in a two-lens system, is converging with a focal length +15.0 cm and Lens 2 is also converging, with a focal length of +5.0 cm. An object is placed 40.0 cm to the left of Lens 1, as shown. If the two lenses are separated by 30.0 cm, where is the final image in relation to Lens 2?
A converging lens of focal length 20.0 cm forms images of an object situated at various...
A converging lens of focal length 20.0 cm forms images of an object situated at various distances. (a) If the object is placed 40.0 cm from the lens, locate the image, state whether it's real or virtual, and find its magnification. (b) Repeat the problem when the object is at 20.0 cm and (c) again when the object is 10.0 cm from the lens. (d) Follow through with ray tracing. And Repeat the above problem, but now for a diverging...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT