Question

In: Advanced Math

A mass 7kg of stretches a spring 18cm. The mass is acted on by an external...

A mass 7kg of stretches a spring 18cm. The mass is acted on by an external force of 5sin(t/2) N and moves in a medium that imparts a viscous force of 4N when the speed of the mass is 8cm/s. If the mass is set in motion from its equilibrium position with an initial velocity of 4cm/s, determine the position of the mass at any time t. Use 9.8m/s2 as the acceleration due to gravity. Pay close attention to the units.

u(t) = ? m

Solutions

Expert Solution



Related Solutions

A mass of 8 kg stretches a spring 16 cm. The mass is acted on by...
A mass of 8 kg stretches a spring 16 cm. The mass is acted on by an external force of 7sin⁡(t/4)N and moves in a medium that imparts a viscous force of 3 N when the speed of the mass is 6 cm/s.If the mass is set in motion from its equilibrium position with an initial velocity of 4 cm/s, determine the position u of the mass at any time t. Use 9.8 m/s^2 as the acceleration due to gravity....
A mass that weight 5lb stretches a spring 3in. The system is acted on by an...
A mass that weight 5lb stretches a spring 3in. The system is acted on by an external force 6sin⁡(8sqrt2 t)lb. If the mass is pulled down 4in and then released, determine the position of the mass at any time t. Use 32ft/s2 as the acceleration due to gravity. Pay close attention to the units. u(t)=
A mass that weight 15lb15lb stretches a spring 8in8in. The system is acted on by an...
A mass that weight 15lb15lb stretches a spring 8in8in. The system is acted on by an external force 9sin(43–√t)lb9sin⁡(43t)lb.If the mass is pulled down 3in3in and then released, determine the position of the mass at any time tt. Use 32ft/s232ft/s2 as the acceleration due to gravity. Pay close attention to the units. Answer must be in inches
A mass that weight 6lb stretches a spring 4in. The system is acted on by an...
A mass that weight 6lb stretches a spring 4in. The system is acted on by an external force 2sin(4sqrt(6)t)lb.If the mass is pulled down 3in and then released, determine the position of the mass at any time t. Use 32ft/s^2 as the acceleration due to gravity. Pay close attention to the units. Answer must be in inches
A mass of 50 g stretches a spring 3.828125 cm. If the mass is set in...
A mass of 50 g stretches a spring 3.828125 cm. If the mass is set in motion from its equilibrium position with a downward velocity of 50 cms, and if there is no damping, determine the position u of the mass at any time t. Enclose arguments of functions in parentheses. For example, sin(2x). Assume g=9.8 ms2. Enter an exact answer. u(t)=     m When does the mass first return to its equilibrium position? Enter an exact answer. t=     s
A mass of 1.5 kg stretches a spring 0.05 mm. The mass is in a medium...
A mass of 1.5 kg stretches a spring 0.05 mm. The mass is in a medium that exerts a viscous resistance of 240 NNwhen the mass has a velocity of 6 msms. The viscous resistance is proportional to the speed of the object. Suppose the object is displaced an additional 0.06 mm and released. Find an function to express the object's displacement from the spring's natural position, in mm after tt seconds. Let positive displacements indicate a stretched spring, and...
A mass of 50 g stretches a spring 3.828125 cm. If the mass is set in...
A mass of 50 g stretches a spring 3.828125 cm. If the mass is set in motion from its equilibrium position with a downward velocity of 10 cm/s, and if there is no damping, determine the position u of the mass at any time t. Enclose arguments of functions in parentheses. For example, sin(2x). Assume g=9.8 ms2. Enter an exact answer.
A mass of 50 g stretches a spring 1.568 cm. If the mass is set in...
A mass of 50 g stretches a spring 1.568 cm. If the mass is set in motion from its equilibrium position with a downward velocity of 50 cms, and if there is no damping, determine the position u of the mass at any time t. Enclose arguments of functions in parentheses. For example, sin(2x). Assume g=9.8 ms2. Enter an exact answer. u(t)= m When does the mass first return to its equilibrium position? Enter an exact answer. t=
A mass weighing 17 lb stretches a spring 7 in. The mass is attached to a...
A mass weighing 17 lb stretches a spring 7 in. The mass is attached to a viscous damper with damping constant 2 lb *s/ft. The mass is pushed upward, contracting the spring a distance of 2 in, and then set into motion with a downward velocity of 2 in/s. Determine the position u of the mass at any time t. Use 32 ft/s^2 as the acceleration due to gravity. Pay close attention to the units. Leave answer in terms of...
A mass of 20 grams stretches a spring 5cm. Suppose that the mass is also attached...
A mass of 20 grams stretches a spring 5cm. Suppose that the mass is also attached to a damper with constant coefficient 0.4 N·s/m. Initially the mass is pulled down an additional 2cm and released. Write a differential equation for the position u(t) of the mass at time t (make the units meters, kilograms, Newtons, seconds). Do NOT solve the differential equation. The solution to a differential equation that models a vibrating spring is u(t) = 4e−t cos(3t) + 3e−t...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT