In: Math
Below are means, standard deviations, and sample sizes of three different data sets. Estimate the 90% confidence interval for dataset A, 95% for data set B, and 99% for set C.
Set A: mean=6300, standard deviation= 300, n=200
Set B: mean=65, standard deviation= 15, n=75
Set C: mean=93, standard deviation= 37, n=200
a) x_bar =6300
= 300
n=200
So 90% confidence interval is given by
CI = x_bar z*/sqrt (n)
= 6300 1.64 * 300/sqrt(200)
= 6300 34.7897
CI = 6300 - 34.7897 and CI = 6300 + 34.7897
CI = 6265.21 CI = 6334.79
So 90 % confidence interval is (6265.21,6334.79)
b) x_bar = 65
= 15
n=75
So 95% confidence interval is given by
CI = x_bar z* (/sqrt (n))
= 65 1.96* 15/sqrt(74)
= 65 3.39
CI = 65 - 3.39 and CI = 65 + 3.39
= 61.61 CI = 68.39
So 95 %confidence interval is (61.61,68.39)
c) given
X_bar = 93
= 37
n=200
So 99% confidence interval is given by
CI = x_bar z* /sqrt (n)
= 93 2.58 * 37/sqrt (200)
= 93 6.75
CI = 93 - 6.75 and CI = 93 + 6.75
= 86.25 CI = 99.75
So 99% confidence interval is (86.25,99.75)