Question

In: Statistics and Probability

Independent random samples selected from two normal populations produced the sample means and standard deviations shown...

Independent random samples selected from two normal populations produced the sample means and standard deviations shown to the right.

a.

Assuming equal​ variances, conduct the test

Upper H 0 : left parenthesis mu 1 minus mu 2 right parenthesis equals 0H0: μ1−μ2=0

against

Upper H Subscript a Baseline : left parenthesis mu 1 minus mu 2 right parenthesis not equals 0Ha: μ1−μ2≠0

using alpha equals 0.10 .α=0.10.

b.

Find and interpret the

9090​%

confidence interval for

left parenthesis mu 1 minus mu 2 right parenthesisμ1−μ2.

Sample 1

Sample 2

n 1n1equals=1515

n 2n2equals=1414

x overbar 1x1equals=5.55.5

x overbar 2x2equals=7.87.8

s 1s1equals=3.73.7

s 2s2equals=4.64.6

a. Find the test statistic.

The test statistic is

Solutions

Expert Solution


Related Solutions

independent random samples selected from two normal populations produced the following sample means and standard deviations....
independent random samples selected from two normal populations produced the following sample means and standard deviations. sample 1: n1= 17, x1= 5.4, s1= 3.4 sample 2: n2 =12, x2 = 7.9, s2= 4.8 a. assuming equal variances, conduct the test ho: (m1-m2) is equal to 0, against the ha: (m1-m2) isn't equal to 0 using alpha = .05 b. find and interpret the 95% confidence interval (m1-m2).
Independent random samples selected from two normal populations produced the following sample means and standard deviations....
Independent random samples selected from two normal populations produced the following sample means and standard deviations. Sample 1 Sample 2 n1 = 14 n2 = 11 1 = 7.1 2 = 8.4 s1 = 2.3 s2 = 2.9 Find and interpret the 95% confidence interval for   
Two random samples are selected from two independent populations. A summary of the samples sizes, sample...
Two random samples are selected from two independent populations. A summary of the samples sizes, sample means, and sample standard deviations is given below: n1=37,n2=44,x¯1=58.9,x¯2=74.7,s1=5.5s2=10.1 n 1 =37, x ¯ 1 =58.9, s 1 =5.5 n 2 =44, x ¯ 2 =74.7, s 2 =10.1 Find a 95.5% confidence interval for the difference μ1−μ2 μ 1 − μ 2 of the means, assuming equal population variances. Confidence Interval
Two random samples are selected from two independent populations. A summary of the samples sizes, sample...
Two random samples are selected from two independent populations. A summary of the samples sizes, sample means, and sample standard deviations is given below: n1=39,n2=48,x¯1=52.5,x¯2=77.5,s1=5s2=11 Find a 97.5% confidence interval for the difference μ1−μ2 of the means, assuming equal population variances. Confidence Interval =
In order to compare the means of two populations, independent random samples are selected from each...
In order to compare the means of two populations, independent random samples are selected from each population, with the results shown in the table below. Use these data to construct a 98% confidence interval for the difference in the two population means. Sample 1 Sample 2 Sample size 500 400 Sample mean 5,280 5,240 Sample standard dev. 150 200
Two random samples are selected from two independent populations. A summary of the sample sizes, sample...
Two random samples are selected from two independent populations. A summary of the sample sizes, sample means, and sample standard deviations is given below: n1=43, x¯1=59.1, ,s1=5.9 n2=40, x¯2=72.6, s2=11 Find a 99% confidence interval for the difference μ1−μ2 of the means, assuming equal population variances. _________<μ1−μ2<____________
Consider independent random samples from two populations that are normal or approximately normal, or the case...
Consider independent random samples from two populations that are normal or approximately normal, or the case in which both sample sizes are at least 30. Then, if σ1 and σ2 are unknown but we have reason to believe that σ1 = σ2, we can pool the standard deviations. Using sample sizes n1 and n2, the sample test statistic x1 − x2 has a Student's t distribution where t = x1 − x2 s 1 n1 + 1 n2 with degrees...
Two independent random samples were selected from two normally distributed populations with means and variances (μ1,σ21)...
Two independent random samples were selected from two normally distributed populations with means and variances (μ1,σ21) and (μ2,σ22). The sample sizes, means and variances are shown in the following table. Sample 1 n1 = 13 x̄1 = 18.2 s21 = 75.3 Sample 2 n2 = 14 x̄2 = 17.1 s2= 61.3 (a). Test H0 : σ12 = σ2against Ha : σ12 ̸= σ2. Use α = 0.05. Clearly show the 4 steps. (b). TestH0 :μ1 −μ2 =0againstHa :μ1 −μ2 >0....
Independent random samples, each containing 60 observations, were selected from two populations. The samples from populations...
Independent random samples, each containing 60 observations, were selected from two populations. The samples from populations 1 and 2 produced 37 and 30 successes, respectively. Test H0:(p1−p2)=0 against Ha:(p1−p2)≠0. Use α=0.05. (a) The test statistic is   (b) The P-value is (c) The final conclusion is A. We can reject the null hypothesis that (p1−p2)=0 and conclude that (p1−p2)≠0. B. There is not sufficient evidence to reject the null hypothesis that (p1−p2)=0.
Independent random samples, each containing 60 observations, were selected from two populations. The samples from populations...
Independent random samples, each containing 60 observations, were selected from two populations. The samples from populations 1 and 2 produced 23 and 13 successes, respectively. Test H0:(p1−p2)=0H0:(p1−p2)=0 against Ha:(p1−p2)>0Ha:(p1−p2)>0. Use α=0.03α=0.03 (a) The test statistic is (b) The P-value is
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT