In: Math
Shipment | Time to Deliver (Days) |
1 | 7.0 |
2 | 12.0 |
3 | 4.0 |
4 | 2.0 |
5 | 6.0 |
6 | 4.0 |
7 | 2.0 |
8 | 4.0 |
9 | 4.0 |
10 | 5.0 |
11 | 11.0 |
12 | 9.0 |
13 | 7.0 |
14 | 2.0 |
15 | 2.0 |
16 | 4.0 |
17 | 9.0 |
18 | 5.0 |
19 | 9.0 |
20 | 3.0 |
21 | 6.0 |
22 | 2.0 |
23 | 6.0 |
24 | 5.0 |
25 | 6.0 |
26 | 4.0 |
27 | 5.0 |
28 | 3.0 |
29 | 4.0 |
30 | 6.0 |
31 | 9.0 |
32 | 2.0 |
33 | 5.0 |
34 | 6.0 |
35 | 7.0 |
36 | 2.0 |
37 | 6.0 |
38 | 9.0 |
39 | 5.0 |
40 | 10.0 |
41 | 5.0 |
42 | 6.0 |
43 | 10.0 |
44 | 3.0 |
45 | 12.0 |
46 | 9.0 |
47 | 6.0 |
48 | 4.0 |
49 | 3.0 |
50 | 7.0 |
51 | 2.0 |
52 | 7.0 |
53 | 3.0 |
54 | 2.0 |
55 | 7.0 |
56 | 3.0 |
57 | 5.0 |
58 | 7.0 |
59 | 4.0 |
60 | 6.0 |
61 | 4.0 |
62 | 4.0 |
63 | 7.0 |
64 | 8.0 |
65 | 4.0 |
66 | 7.0 |
67 | 9.0 |
68 | 6.0 |
69 | 7.0 |
70 | 11.0 |
71 | 9.0 |
72 | 4.0 |
73 | 8.0 |
74 | 10.0 |
75 | 6.0 |
76 | 7.0 |
77 | 4.0 |
78 | 5.0 |
79 | 8.0 |
80 | 8.0 |
81 | 5.0 |
82 | 9.0 |
83 | 7.0 |
84 | 6.0 |
85 | 14.0 |
86 | 9.0 |
87 | 3.0 |
88 | 4.0 |
A) Find the upper limit for the mean at the 90% confidence level.
B) Find the lower limit for the mean at the 90% confidence level.
C) Find the width of the confidence interval at the 90% confidence level.
D) Find the score from the appropriate probability table (standard normal distribution, t distribution, chi-square) to construct a 99% confidence interval.
If you use Excel, please list what Excel functions would allow me to get this answers for future reference
Solution:
From given data, we have
Xbar = 5.943181818
S = 2.688237275
n = 88
df = n – 1 = 87
Confidence level = 90%
Critical t value = 1.6626
Confidence interval = Xbar ± t*S/sqrt(n)
Confidence interval = 5.943181818 ± 1.6626*2.688237275/sqrt(88)
Confidence interval = 5.943181818 ± 1.6626* 0.286567056
Confidence interval = 5.943181818 ± 0.4764
A) Find the upper limit for the mean at the 90% confidence level.
Upper limit = 5.943181818 + 0.4764 = 6.4196
B) Find the lower limit for the mean at the 90% confidence level.
Lower limit = 5.943181818 - 0.4764 =5.4667
C) Find the width of the confidence interval at the 90% confidence level.
Width = Upper limit – lower limit = 6.4196 - 5.4667 = 0.9529
D) Find the score from the appropriate probability table (standard normal distribution, t distribution, chi-square) to construct a 99% confidence interval.
Confidence level = 99%
df = 87
Critical t value = 2.6335
(by using t-table)