In: Math
| Shipment | Time to Deliver (Days) |
| 1 | 7.0 |
| 2 | 12.0 |
| 3 | 4.0 |
| 4 | 2.0 |
| 5 | 6.0 |
| 6 | 4.0 |
| 7 | 2.0 |
| 8 | 4.0 |
| 9 | 4.0 |
| 10 | 5.0 |
| 11 | 11.0 |
| 12 | 9.0 |
| 13 | 7.0 |
| 14 | 2.0 |
| 15 | 2.0 |
| 16 | 4.0 |
| 17 | 9.0 |
| 18 | 5.0 |
| 19 | 9.0 |
| 20 | 3.0 |
| 21 | 6.0 |
| 22 | 2.0 |
| 23 | 6.0 |
| 24 | 5.0 |
| 25 | 6.0 |
| 26 | 4.0 |
| 27 | 5.0 |
| 28 | 3.0 |
| 29 | 4.0 |
| 30 | 6.0 |
| 31 | 9.0 |
| 32 | 2.0 |
| 33 | 5.0 |
| 34 | 6.0 |
| 35 | 7.0 |
| 36 | 2.0 |
| 37 | 6.0 |
| 38 | 9.0 |
| 39 | 5.0 |
| 40 | 10.0 |
| 41 | 5.0 |
| 42 | 6.0 |
| 43 | 10.0 |
| 44 | 3.0 |
| 45 | 12.0 |
| 46 | 9.0 |
| 47 | 6.0 |
| 48 | 4.0 |
| 49 | 3.0 |
| 50 | 7.0 |
| 51 | 2.0 |
| 52 | 7.0 |
| 53 | 3.0 |
| 54 | 2.0 |
| 55 | 7.0 |
| 56 | 3.0 |
| 57 | 5.0 |
| 58 | 7.0 |
| 59 | 4.0 |
| 60 | 6.0 |
| 61 | 4.0 |
| 62 | 4.0 |
| 63 | 7.0 |
| 64 | 8.0 |
| 65 | 4.0 |
| 66 | 7.0 |
| 67 | 9.0 |
| 68 | 6.0 |
| 69 | 7.0 |
| 70 | 11.0 |
| 71 | 9.0 |
| 72 | 4.0 |
| 73 | 8.0 |
| 74 | 10.0 |
| 75 | 6.0 |
| 76 | 7.0 |
| 77 | 4.0 |
| 78 | 5.0 |
| 79 | 8.0 |
| 80 | 8.0 |
| 81 | 5.0 |
| 82 | 9.0 |
| 83 | 7.0 |
| 84 | 6.0 |
| 85 | 14.0 |
| 86 | 9.0 |
| 87 | 3.0 |
| 88 | 4.0 |
A) Find the upper limit for the mean at the 90% confidence level.
B) Find the lower limit for the mean at the 90% confidence level.
C) Find the width of the confidence interval at the 90% confidence level.
D) Find the score from the appropriate probability table (standard normal distribution, t distribution, chi-square) to construct a 99% confidence interval.
If you use Excel, please list what Excel functions would allow me to get this answers for future reference
Solution:
From given data, we have
Xbar = 5.943181818
S = 2.688237275
n = 88
df = n – 1 = 87
Confidence level = 90%
Critical t value = 1.6626
Confidence interval = Xbar ± t*S/sqrt(n)
Confidence interval = 5.943181818 ± 1.6626*2.688237275/sqrt(88)
Confidence interval = 5.943181818 ± 1.6626* 0.286567056
Confidence interval = 5.943181818 ± 0.4764
A) Find the upper limit for the mean at the 90% confidence level.
Upper limit = 5.943181818 + 0.4764 = 6.4196
B) Find the lower limit for the mean at the 90% confidence level.
Lower limit = 5.943181818 - 0.4764 =5.4667
C) Find the width of the confidence interval at the 90% confidence level.
Width = Upper limit – lower limit = 6.4196 - 5.4667 = 0.9529
D) Find the score from the appropriate probability table (standard normal distribution, t distribution, chi-square) to construct a 99% confidence interval.
Confidence level = 99%
df = 87
Critical t value = 2.6335
(by using t-table)