In: Finance
Consider the following cash flows on two mutually exclusive projects:
Year | Project A | Project B |
0 |
67000 | 82000 |
1 | 47000 | 46000 |
2 | 42000 | 55000 |
3 | 37000 | 58000 |
The cash flows of Project A are expressed in real terms while
those of Project B are expressed in nominal terms. The appropriate
nominal discount rate is 10 percent and the inflation rate is 2
percent.
Calculate the NPV for each project. (Do not round
intermediate calculations and round your answers to 2 decimal
places, e.g., 32.16.)
NPV | |
Project A | $ |
Project B | $ |
Note: Real cash flow will be discounted at real rate and nominal cash flow will be discounted using nominal rate | ||||||||||
we know that nominal rate = (1+Real rate)*(1+inflation rate) | ||||||||||
therefore real rate = | =(1+nominal rate)/(1+inflation rate)-1 | |||||||||
Real rate = | =(1+10%)/(1+2%)-1 | |||||||||
7.84% | ||||||||||
computation of NPV project A | ||||||||||
i | ii | iii | iv=ii*iii | |||||||
Year | Project A | PVIF @ 7.84% | present value | |||||||
0 | -67000 | 1.0000 | (67,000.00) | |||||||
1 | 47000 | 0.9273 | 43,581.82 | |||||||
2 | 42000 | 0.8598 | 36,113.06 | |||||||
3 | 37000 | 0.7973 | 29,500.15 | |||||||
NPV= | 42,195.02 | |||||||||
i | ii | iii | iv=ii*iii | |||||||
Year | Project B | PVIF @ 10% | present value | |||||||
0 | -82000 | 1.0000 | (82,000.00) | |||||||
1 | 46000 | 0.9091 | 41,818.18 | |||||||
2 | 55000 | 0.8264 | 45,454.55 | |||||||
3 | 58000 | 0.7513 | 43,576.26 | |||||||
NPV= | 48,848.99 | |||||||||
Therefore - | ||||||||||
Project A NPV = | 42,195.02 | |||||||||
Project B NPV = | 48,848.99 |