In: Statistics and Probability
Let X and Y be independent random variables with mean πX and ππ, and variances ππ 2 and ππ 2 respectively. Show that
πππ[π β π] = ππ 2 β ππ 2 + ππ 2 β ππ 2 + ππ 2 β ππ 2
GIVEN:
Let X and Y be independent random
variables with mean
and
, and
variances
and
respectively.
TO PROVE:

PROOF:
Given the mean of X
Variance of X 
The formula for variance is given by,



Given the mean of Y
Variance of Y 
The formula for variance is given by,



Thus we have
;
;
;
;
and
.
First, we compute the mean of XY,
{Since X and Y are independent.}
Β Β 
Now the formula for variance of XY is given by,

{Since X and Y are independent and
.}
Β Β 
Using
and
, we obtain the result,



Thus
.