Question

In: Physics

A ball of mass m1 =5.2 kg and a block of mass m2 =2.0 kg are...

A ball of mass m1 =5.2 kg and a block of mass m2 =2.0 kg are connected with a lightweight string over a pulley with moment of inertia I and radius R=0.25m. The coefficient of kinetic friction between the table top and the block of mass m2 is μk = 0.4. If the magnitude of the acceleration is a=2.7 m/s2.
torque_rotational
a)What are the tensions T1 and T2 in the string.
T1=
N

T2=
N
b)Calculate the moment of inertia of the pulley.

I=
kg m2
c) What is the change of the kinetic energy of the system if the system is released from rest and the ball decends a distance h=7.9 m downward.

ΔK =
J

Solutions

Expert Solution


Related Solutions

A block of mass m1 = 1.31 kg and a block of mass m2 = 11.4...
A block of mass m1 = 1.31 kg and a block of mass m2 = 11.4 kg are connected by a massless string over a pulley in the shape of a solid disk having radius R = 0.250 m and mass M = 2 kg. The fixed, wedge-shaped ramp makes an angle of θ = 30.0° as shown in the figure. The coefficient of kinetic friction is 0.24 for both blocks. Determine the acceleration of the blocks.
A block of mass m1 = 1.33 kg and a block of mass m2 = 10.4...
A block of mass m1 = 1.33 kg and a block of mass m2 = 10.4 kg are connected by a massless string over a pulley in the shape of a solid disk having radius R = 0.250 m and mass M = 3 kg. The fixed, wedge-shaped ramp makes an angle of θ = 30.0° as shown in the figure. The coefficient of kinetic friction is 0.44 for both blocks. Determine the acceleration of the blocks.
1)A block of mass m1 = 8.00 kg and a block of mass m2 = 12.0...
1)A block of mass m1 = 8.00 kg and a block of mass m2 = 12.0 kg are connected by a massless string over a pulley in the shape of a solid disk having radius R = 0.350 m and mass M = 12.0 kg. The coefficient of kinetic friction between block m1 and the table is 0.27. a) Draw force diagrams of both blocks and of the pulley. b) Determine the acceleration of the two blocks. c) Determine the...
Three blocks of unknown mass m1 = 1.0 kg, m2 = 2.0 kg, and m3 =...
Three blocks of unknown mass m1 = 1.0 kg, m2 = 2.0 kg, and m3 = 3.0 kg are on a frictionless horizontal surface as shown on the figure below. The blocks are connected by ideal, massless strings. A force FL = 12 N is applied to the left block and is directed to the left. A force FR = 33 N is applied to the right block, and is directed to the right. Find the tensions T12 and T23,...
Block 1 with m1 = 0.127 kg and block 2 with m2 = 0.163 kg are...
Block 1 with m1 = 0.127 kg and block 2 with m2 = 0.163 kg are supported on a horizontal frictionless table whose surface is 1.75 m above a horizontal floor as shown in the Figure. Block 1 has an initial speed of v = 5.50 m/s toward block 2 which is initially at rest. A) (7 pts) Block 1 collides with block 2 and coalesces (forms one object). Calculate the velocity of the coalesced object. B) (10 pts) The...
A block of mass m1 =2.00 kg and a block of massm2 = 6.00 kg areconnected...
A block of mass m1 =2.00 kg and a block of massm2 = 6.00 kg areconnected by a massless string over a pulley in the shape of asolid disk having radius R = 0.250 m and mass M =10.0 kg. These blocks are allowed to move on a fixed block-wedge ofangle ? = 30.0
A bullet of mass m1 is fired horizontally into a wooden block of mass m2 resting...
A bullet of mass m1 is fired horizontally into a wooden block of mass m2 resting on a horizontal surface. The coefficient of kinetic friction between block and surface is μk. The bullet remains embedded in the block, which is observed to slide a distance s along the surface before stopping. What was the initial speed of the bullet? Take the free-fall acceleration to be g.
Imagine two carts with different masses colliding (m1 = 2.0 kg, m2 = 1.0 kg). If...
Imagine two carts with different masses colliding (m1 = 2.0 kg, m2 = 1.0 kg). If cart one is initially moving at 10 m/s and the other cart is stationary, calculate the final speed of each mass after they have a 100% elastic collision. Please show all work!
Three blocks of unknown mass m1, m2=2.0 kg, and m3 = 3.0 kg are on a frictionless horizontal surface as shown on the figure below.
Three blocks of unknown mass m1, m2=2.0 kg, and m3 = 3.0 kg are on a frictionless horizontal surface as shown on the figure below. The blocks are connected by ideal, massless strings. A force FL=11 N is applied to the left block and is directed to the left. A force FR=33 N is applied to the right block, and is directed to the right. The tension T12 in the string between m1 and m2 is 13 N and the...
1. Suppose we have two blocks of masses m1 and m2. The block with mass m1...
1. Suppose we have two blocks of masses m1 and m2. The block with mass m1 is moving towards block m2 at speed v. After the collision, we measure the total kinetic energy and find that the total kinetic energy after the collision is m2/(m1+m2) less than the kinetic energy before the collision. Find the final speeds of the two blocks. What type of collision is this? 2. Explain, in words, how we know that a freely spinning asteroid in...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT