Question

In: Physics

A block of mass m1 = 0.500 kg sits on a frictionless surface and is connected...

A block of mass m1 = 0.500 kg sits on a frictionless surface and is connected by a weightless string to a weight of mass m2 = 0.200 kg that hangs from a pulley. The system is initially at rest. If the mass m2 is released and drops for 1.00 m, what is the speed of the system? Assume that mass m1 does not reach the edge of the surface. Use energy considerations, not force considerations. What is the speed of the system, if the surface is rough and has a kinetic friction coefficient k = 0.250?

Solutions

Expert Solution

Let, the initial and final heights of the mass m2 be hi and hf respectively.

Hence, ( hi - hf ) = 1 m.

Hence, distance moved by the mass m1 is also d = 1 m.

Since, m1g is the normal reaction force by the surface on m1,

frictional force on the mass m1 = Ff = k x m1g.

Using the principle of conservation of energy, we get :

Initial P.E. of m2 = Final P.E. of m2 + Work done by Ff + Total K.E. of the system of mass ( m1 + m2 )

or, m2ghi = m2ghf + Ff x d + ( m1 + m2 ) v2 / 2

or, m2g x ( hi - hf ) = k x m1g x d + ( m1 + m2 ) v2 / 2

or, ( m1 + m2 ) v2 / 2 = m2g x ( hi - hf ) - k x m1g x d

or, ( 0.5 + 0.2 ) x v2 / 2 = 0.2 x 9.8 x 1 - 0.25 x 0.5 x 9.8 x 1

or, 0.35 x v2 = 0.735

or, v2 = 0.735 / 0.35 ~ 2.1

or, v = 2.1 ~ 1.45.

Hence,  the speed of the system is : 1.45 m / s.


Related Solutions

A block of mass m1=6.6 kg rests on a frictionless horizontal surface. A second block of...
A block of mass m1=6.6 kg rests on a frictionless horizontal surface. A second block of mass m2=9.4 kg hangs from an ideal cord of negligible mass, which runs over an ideal pulley and then is connected to the side of the first block. The blocks are released from rest. How far will block 1 move during the 1.1 second interval?
A mass; m1 = 64 g, sits on a frictionless horizontal surface, and is attached to...
A mass; m1 = 64 g, sits on a frictionless horizontal surface, and is attached to a spring of spring constant k = 51 N/m. The other end of the horizontal spring is attached to a wall; the system is in equilibrium. Another mass; m2 = 18 g, strikes the stationary mass m1, and sticks to it. As a result, the spring is compressed by a distance of 24.5 cm before the masses come to a momentary stop. a) How...
A block with mass M1 rests on a frictionless table. It is connected by a massless...
A block with mass M1 rests on a frictionless table. It is connected by a massless string to a block with mass M2, which hangs below the edge of the table. The system is released from rest at time t = 0. Find the distance block M1 moves in time t. You may assume that the string passes over a massless, frictionless pulley at the edge of the table to assist your calculations.
A mass of 0.5 kg sits on a horizontal frictionless patch of ice. It is connected...
A mass of 0.5 kg sits on a horizontal frictionless patch of ice. It is connected to a spring with a with a spring constant of k=5 N/m. The spring is initially relaxed. It is then pulled to the right and stretched by 0.1 meters. It is released afterwards to return to its equilibrium position at x=0 meters. "x" is the amount of displacement. Please use conservation of energy to find the velocity of the mass at 0.08 meters.
A block of mass m1 travels at a speed of v0 on a frictionless horizontal surface...
A block of mass m1 travels at a speed of v0 on a frictionless horizontal surface when it comes upon a second block of mass m2 which is initially motionless. Block m2 has a massless spring with spring constant k in front of it. a. Explain why the linear momentum of the system of two blocks and spring is or is not conserved during the collision. b. Explain why the mechanical energy of the system of two blocks and spring...
M1 has a mass of 6.330 kg. It is on a horizontal surface connected by a...
M1 has a mass of 6.330 kg. It is on a horizontal surface connected by a massless string to a hook where M2 can be increased smoothly. The pulley has a negligible mass & no friction. When M2= 3.266 kg it begins to accelerate downward at a rate of 2.110 m/s2. Calculate us - uk between M1 and the surface.
A mass m1 = 5.6 kg rests on a frictionless table and connected by a massless...
A mass m1 = 5.6 kg rests on a frictionless table and connected by a massless string to another mass m2 = 5.7 kg. A force of magnitude F = 44 N pulls m1 to the left a distance d = 0.88 m. Initally both blocks are at rest. 1) How much work is done by the force F on the two block system? J 2) How much work is done by the normal force on m1 and m2? J...
A mass m1 = 4.4 kg rests on a frictionless table and connected by a massless...
A mass m1 = 4.4 kg rests on a frictionless table and connected by a massless string over a massless pulley to another mass m2 = 3.8 kg which hangs freely from the string. When released, the hanging mass falls a distance d = 0.7 m. 1)How much work is done by gravity on the two block system? 2)How much work is done by the normal force on m1? 3)What is the final speed of the two blocks? 4)How much...
A mass m1 = 4.7 kg rests on a frictionless table and connected by a massless...
A mass m1 = 4.7 kg rests on a frictionless table and connected by a massless string over a massless pulley to another mass m2 = 4.3 kg which hangs freely from the string. When released, the hanging mass falls a distance d = 0.76 m. 1. How much work is done by gravity on the two block system? 2. How much work is done by the normal force on m1? 3. What is the final speed of the two...
A block of mass m1 = 3.27 kg on a frictionless plane inclined at angle ?...
A block of mass m1 = 3.27 kg on a frictionless plane inclined at angle ? = 31.2
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT