Question

In: Physics

You are given 13.0 mm of thin wire. You form the wire into a circular coil...

You are given 13.0 mm of thin wire. You form the wire into a circular coil with 40 turns.

If this coil is placed with its axis parallel to a 0.19 TT magnetic field, what is the flux through the coil?

Express your answer with the appropriate units.

Solutions

Expert Solution

If length of thin wire is in 'mm', and not 'm' then let me know.

Magnetic flux through a coil placed in magnetic field is given by:

= N*(B.A) = N*B*A*cos

B = Magnetic field = 0.19 T

N = number of turns = 40

= Angle between magnetic field and area vector = 0 deg

A = Area of each coil = pi*r^2

r = radius of each coil

We know that total length of wire = 13.0 m (I'm assuming that unit of length of wire is 'm' and not 'mm', as may be you've mistyped your unit twice just like 0.19 'TT' if it's mm do let me know.)

Circumference of loop = C = N*2*pi*r

r = C/(2*pi*N) = 13.0/(2*pi*40)

A = pi*(13.0/(2*pi*40))^2

So,

= 40*0.19*pi*(13.0/(2*pi*40))^2*cos 0 deg

= 6.39*10^-2 Wb

Let me know if you've any query.


Related Solutions

A coil is wrapped with 226 turns of wire on the perimeter of a circular frame...
A coil is wrapped with 226 turns of wire on the perimeter of a circular frame (of radius 70 cm). Each turn has the same area, equal to that of the frame. A uniform magnetic field is directed perpendicular to the plane of the coil. This field changes at a constant rate from 22 mT to 61 mT in 79 ms. What is the magnitude of the induced average E in the coil, over the time interval 79 ms during...
A circular coil of wire with radius 4 cm and 20 turns is placed in a...
A circular coil of wire with radius 4 cm and 20 turns is placed in a uniform magnetic field of magnitude 0.3 T. The magnetic field is parallel to the area vector; i.e. perpendicular to the plane of the coil. a) What is the magnetic flux through the coil? b) The magnetic field is decreased to 0 T in 0.1 s. What is the magnitude of the emf induced in the coil during this time interval? c) If the coil...
6-Torque on a coil. A circular loop of wire has a diameter of 20.0 cm and...
6-Torque on a coil. A circular loop of wire has a diameter of 20.0 cm and contains 10 loops. The current in each loop is 3.00 A, and the coil is placed in a 2.00-T external magnetic field. Determine the maximum and minimum torque exerted on the coil by the field.
A four-turn circular wire coil of radius 0.550 m lies in a plane perpendicular to a...
A four-turn circular wire coil of radius 0.550 m lies in a plane perpendicular to a uniform magnetic field of magnitude 0.355 T. If the wire is reshaped from a four-turn circle to a two-turn circle in 0.128 s (while remaining in the same plane), what is the average induced emf in the wire during this time?
A square coil of thin wire with 4 turns and side-length 3 cm sits inside an...
A square coil of thin wire with 4 turns and side-length 3 cm sits inside an ideal solenoid.  The axis of the solenoid is along +k, but the axis of the coil is tilted at a fixed unknown angle θ from the +z-axis.  The solenoid has n = 5000 turns/meter, and carries current I(t) = 5t3– 4t2+ t + 5 [units of Amperes with t given in seconds] counterclockwise.  The wire of the coil has cross-sectional area A = 50 μm2, and the...
A 580-mm long tungsten wire, with a 0.046-mm-diameter circular cross section, is wrapped around in the...
A 580-mm long tungsten wire, with a 0.046-mm-diameter circular cross section, is wrapped around in the shape of a coil and used as a filament in an incandescent light bulb. When the light bulb is connected to a battery, a current of 0.526 A is measured through the filament. (Note: tungsten has a resistivity of 4.9 × 10-8 ? • m.) How many electrons pass through this filament in 5 seconds? How many electrons pass through this filament in 5...
If 47.0 cm of copper wire (diameter = 1.00 mm) is formed into a circular loop...
If 47.0 cm of copper wire (diameter = 1.00 mm) is formed into a circular loop and placed perpendicular to a uniform magnetic field that is increasing at a constant rate of 10.5mT/s, at what rate is thermal energy generated in the loop? _______________ W
A 33 cm diameter coil consists of 19 turns of cylindrical copper wire 2.8 mm in...
A 33 cm diameter coil consists of 19 turns of cylindrical copper wire 2.8 mm in diameter. A uniform magnetic field, perpendicular to the plane of the coil, changes at a rate of 9.50
A length of 20-gauge copper wire (of diameter 0.8118 mm) is formed into a circular loop...
A length of 20-gauge copper wire (of diameter 0.8118 mm) is formed into a circular loop with a radius of 24.0 cm. A magnetic field perpendicular to the plane of the loop increases from zero to 18.0 mT in 0.20 s. Find the average electrical power dissipated in the process.
A 0.500 mm diameter copper wire makes up a 136 turns, 7.60 cm diameter coil. There...
A 0.500 mm diameter copper wire makes up a 136 turns, 7.60 cm diameter coil. There is a magnetic field parallel to the axis of the coil. If the induced current in the coil is 2.80 A, what is the rate of change of the magnetic field? a) 0.0839 T/s b) 3.63×10-6 T/s c) 12.8 T/s d) 1.74×103 T/s
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT