Question

In: Physics

A 0.500 mm diameter copper wire makes up a 136 turns, 7.60 cm diameter coil. There...

A 0.500 mm diameter copper wire makes up a 136 turns, 7.60 cm diameter coil. There is a magnetic field parallel to the axis of the coil. If the induced current in the coil is 2.80 A, what is the rate of change of the magnetic field? a) 0.0839 T/s b) 3.63×10-6 T/s c) 12.8 T/s d) 1.74×103 T/s

Solutions

Expert Solution

The induced emf ( in T/s) = NBA

Where

N= No of turns .

B = Magnetic field

A = Area of coil = R2

Where R = Radius of coil

This emf will be equal to IR

Where I = current and

R = resistance = L/a

Where 'a' is the cross section area of the coil = r2 where 'r' is the radius of the cross section of wire and

L = length of wire = 2RN

Now equating both induced emf and the V = IR

NBA = IR

Putting all the values of N ,B ,A, I and R

from above given expression the net result will come out -

B = (2I ) / Rr2

Put value of the = 1.68 x 10 -8 Ohm - m ( Standard value at NTP)

I = 2.8 A ( given )

R = 7.6 / 2 = 3.8 cm = 3.8 x 10-2 m.

r = 0.25 mm = 0.25 x 10 -3 m.

On putting all those values in the above expression we will get the value of B = 12.62 T/s which is almost equal to 12.8 T / s hence the option C will be correct.

There is minor differences in the decimal places about 0.18 which is due to rounding off the decimal values.

Please appreciate the effort by thumbs up if you finds the solution authentic and well explanatory.


Related Solutions

A 33 cm diameter coil consists of 19 turns of cylindrical copper wire 2.8 mm in...
A 33 cm diameter coil consists of 19 turns of cylindrical copper wire 2.8 mm in diameter. A uniform magnetic field, perpendicular to the plane of the coil, changes at a rate of 9.50
If 47.0 cm of copper wire (diameter = 1.00 mm) is formed into a circular loop...
If 47.0 cm of copper wire (diameter = 1.00 mm) is formed into a circular loop and placed perpendicular to a uniform magnetic field that is increasing at a constant rate of 10.5mT/s, at what rate is thermal energy generated in the loop? _______________ W
A 2.0 mm -diameter, 50 cm -long copper wire carries a 4.5 A current. What is...
A 2.0 mm -diameter, 50 cm -long copper wire carries a 4.5 A current. What is the potential difference between the ends of the wire?
An 1200-turn coil of wire that is 2.4 cm in diameter is in a magnetic field...
An 1200-turn coil of wire that is 2.4 cm in diameter is in a magnetic field that drops from 0.12 T to 0 TT in 10 ms . The axis of the coil is parallel to the field. part A) What is the emf of the coil? Express your answer in volts.
A circular coil with a diameter of 25.0 cm and 158 turns rotates about a vertical...
A circular coil with a diameter of 25.0 cm and 158 turns rotates about a vertical axis with an angular speed of 1230 rpm . The only magnetic field in this system is that of the Earth. At the location of the coil, the horizontal component of the magnetic field is 3.81×10−5T, and the vertical component is 2.85×10−5T. Find the maximum emf induced in the coil. Answer in mV
The inner diameter of a copper ring is 0.500 cm at 273 K. To what temperature,...
The inner diameter of a copper ring is 0.500 cm at 273 K. To what temperature, in kelvin, should the ring be heated up such that its diameter becomes 0.501 cm? αCu = 17 x 10^-6 K.
A 210 turn flat coil of wire 25.0 cm in diameter acts as an antenna for...
A 210 turn flat coil of wire 25.0 cm in diameter acts as an antenna for FM radio at a frequency of 100 MHz. The Magnetic field of the incoming electromagnetic wave is perpendicular to the coil and has a maximum strength of 9.30*10^-13 T. What power is incident on the coil? What average emf is induced in the coil over one-fourth of a cycle? If the radio receiver has an inductance of 2.30 microH, what capacitance must it have...
A helical compression spring is wound using 1 mm-diameter music wire. The outside coil diameter of...
A helical compression spring is wound using 1 mm-diameter music wire. The outside coil diameter of the spring is 11 mm. The ends are squared and there are 12 total turns. (a) Estimate the torsional yield strength of the wire. (b) Estimate the static load corresponding to the yield strength. (c) Estimate the scale of the spring. (d) Estimate the solid length of the spring. (e) Is there any possibility for buckling?
What is the resistance of a 2.9-m length of copper wire 1.4 mm in diameter?
What is the resistance of a 2.9-m length of copper wire 1.4 mm in diameter? The resistivity of copper is 1.68×10-8Ω⋅m.
   A copper wire with diameter of 1,5 mm and length of 4m carries constant current of...
   A copper wire with diameter of 1,5 mm and length of 4m carries constant current of 1.75 A. The free electron density in the wire is 8,5x1028 m-3. The resistivity of copper is 1,72x10-8 .m. Calculate   a) current density, b)drift velocity, c) magnitude of electric field, d) potential between the terminals of wire, e)power dissipated as heat f) mean free time. (mass of electron: 9,1x10-31kg, magnitude of charge of electron: 1,6x10-19 C)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT