Question

In: Physics

A square coil of thin wire with 4 turns and side-length 3 cm sits inside an...

A square coil of thin wire with 4 turns and side-length 3 cm sits inside an ideal solenoid.  The axis of the solenoid is along +k, but the axis of the coil is tilted at a fixed unknown angle θ from the +z-axis.  The solenoid has n = 5000 turns/meter, and carries current I(t) = 5t3– 4t2+ t + 5 [units of Amperes with t given in seconds] counterclockwise.  The wire of the coil has cross-sectional area A = 50 μm2, and the material has a resistivity of ρ = 85 × 10-8 Ωm

         a.  [5 pts]  What is the resistance of the entire coil?

         b.  [5 pts]  The induced emf in the wire is ε = 3 × 10-6V at t=0 (ignoring self-induction). What is the angle θ in degrees?

         c.  [5 pts]  What is the magnitude of current in the wire at t = 3s, and does it flow clockwise or counterclockwise around the +k direction?

         d.  [5 pts]  How much power in being delivered to the coil as a function of time?

         e.  [5 pts]  What is the mutual inductance of this configuration?

         f.  [5 pts]  What is the induced emf on the solenoid due to the induced current in the coil, as a function of time?  (Assume that the current in the solenoid is fixed as given, regardless of the induced emf)

Solutions

Expert Solution

a] Length of the coil = 4 x [0.03 + 0.03] = 4.06 m

cross sectional area =

so, the resistance of the entire coil is:

b] From Faraday's law, the emf induced will be due to change in magnetic flux which happens here due to change in current in the coil.

=>

so, at t = 0,

=>

c] At t = 3s,

so, magnitude of induced current is:

.

the current will be clockwise [Lenz's law]

d]

The power delivered to the coil = ..


Related Solutions

A square coil of wire of side 3.00 cm is placed in a uniform magnetic field...
A square coil of wire of side 3.00 cm is placed in a uniform magnetic field of magnitude 1.75 T directed into the page as in the figure shown below. The coil has 38.0 turns and a resistance of 0.780 Ω. If the coil is rotated through an angle of 90.0° about the horizontal axis shown in 0.335 s, find the following. (a) the magnitude of the average emf induced in the coil during this rotation (b) the average current...
A circular coil of wire with radius 4 cm and 20 turns is placed in a...
A circular coil of wire with radius 4 cm and 20 turns is placed in a uniform magnetic field of magnitude 0.3 T. The magnetic field is parallel to the area vector; i.e. perpendicular to the plane of the coil. a) What is the magnetic flux through the coil? b) The magnetic field is decreased to 0 T in 0.1 s. What is the magnitude of the emf induced in the coil during this time interval? c) If the coil...
A square single loop of wire 4.00 cm on a side with 875 turns lies in...
A square single loop of wire 4.00 cm on a side with 875 turns lies in the xy-plane. The loop is in a uniform magnetic field that changes at a steady rate from B⃗ =(0.200T)i^+(0.150T)k^B→=(0.200T)i^+(0.150T)k^ at t = 0 to B⃗ =(0.300T)i^+(−0.200T)k^ B→=(0.300T)i^+(−0.200T)k^ at t=3.00s. At the time t=2.00s, a) find the magnitude of the induced emf in the coil. b) Find the direction of the induced current in the coil as seen from a point on the +z-axis.
A square conducting loop of side length a = 24 cm sits in three-dimensional space, such...
A square conducting loop of side length a = 24 cm sits in three-dimensional space, such that its area vector points along the vector -i - 4j + k. A uniform magnetic field of strength B = 0.04 mT points along the positive z-axis. A current of I = 0.3 mA is run through the loop. Find the net force on the loop. Find the torque on the loop. (Note it should be of the form (Tx , Ty ,...
A square wire loop of side length a = 2.0 cm and resistance R = 10.0Ω...
A square wire loop of side length a = 2.0 cm and resistance R = 10.0Ω is inside a 1.00m long solenoid with 1000 windings such that the plane of the loop is perpendicular to the solenoid’s magnetic field. The solenoid initially carries a current I = 6.0 A, which is turned down to zero evenly over a period of 12.0 s. If the solenoid’s initial magnetic field is out of the page in the figure, what is the magnitude...
A square coil, 4.0 cm meters on a side, is made from a 3.0 meter length...
A square coil, 4.0 cm meters on a side, is made from a 3.0 meter length of wire. The resistance of the wire is 0.25 ohms. a) Determine the approximate number of loops in the wire (round to nearest whole number) and the area of each loop (in meters!) to 3 significant figures. Use these numbers in the parts below. A horizontal wire sits on the table 8.5 cm away from the center of the coil, carrying a steady 0.40...
A coil is wrapped with 291 turns of wire on the perimeter of a square frame...
A coil is wrapped with 291 turns of wire on the perimeter of a square frame of sides 25.3 cm. Each turn has the same area, equal to that of the frame, and the total resistance of the coil is 2.05 Ohm. A uniform magnetic field is turned on perpendicular to the plane of the coil. If the field changes linearly from 0 to -0.0491 Wb/m2 in a time of 1.07 s, find the magnitude of the induced emf in...
A square, 32.0- turn coil that is 11.0 cm on a side with a resistance of...
A square, 32.0- turn coil that is 11.0 cm on a side with a resistance of 0.770Ω is placed between the poles of a large electromagnet. The electromagnet produces a constant, uniform magnetic field of 0.550 T directed out of the screen. As suggested by the figure, the field drops sharply to zero at the edges of the magnet. The coil moves to the right at a constant velocity of 2.70 cm/s. A shaded, rectangular region of uniformly distributed dots...
a square coil of side 0.18 and 68 turns is positioned with its plane parallel to...
a square coil of side 0.18 and 68 turns is positioned with its plane parallel to 43 T magnetic field. the coil is then turned so that the plane is now perpendicular the magnetic field, in a time of 9ms, what is the magnitude of the induced emf in units of V in the coil
A square, 36.0-turn coil that is 11.0 cm on a side with a resistance of 0.850Ω...
A square, 36.0-turn coil that is 11.0 cm on a side with a resistance of 0.850Ω is placed between the poles of a large electromagnet. The electromagnet produces a constant, uniform magnetic field of 0.700 T directed into the screen. As suggested by the figure, the field drops sharply to zero at the edges of the magnet. The coil moves to the right at a constant velocity of 2.80 cm/s. A shaded, rectangular region of uniformly distributed X's signifying a...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT