Question

In: Physics

A 33 cm diameter coil consists of 19 turns of cylindrical copper wire 2.8 mm in...

A 33 cm diameter coil consists of 19 turns of cylindrical copper wire 2.8 mm in diameter. A uniform magnetic field, perpendicular to the plane of the coil, changes at a rate of 9.50

Solutions

Expert Solution

The resistance of the wire is

              R = ?L/(?r^2)

Here ? = 1.72 x 10-8 ?/m

         L = (19)(?d)

             = (19)(?(2.80x 10^-3 m))

             = 0.167 m

         r = (2.80 x 10^-3 m)/2

           = 1.40  x 10^-3 m

        R = ?L/(?r^2)

            = ( 1.72 x 10-8 ?/m) (0.167 m)/(?( 1.40  x 10^-3 m)^2)

            = 4.66x 10^-4 ?

The formula for the induced emf is

         e =- NA (?B/?t)

           =- (19)(?(0.165m)^2)(0.0095 T/s)

           = - 0.0146 V

So the magnitude of the induced current is

             I= e/R

               =(0.0146 V)/( 4.66x 10^-4 ?)

               = 31.34 A


Related Solutions

A 0.500 mm diameter copper wire makes up a 136 turns, 7.60 cm diameter coil. There...
A 0.500 mm diameter copper wire makes up a 136 turns, 7.60 cm diameter coil. There is a magnetic field parallel to the axis of the coil. If the induced current in the coil is 2.80 A, what is the rate of change of the magnetic field? a) 0.0839 T/s b) 3.63×10-6 T/s c) 12.8 T/s d) 1.74×103 T/s
If 47.0 cm of copper wire (diameter = 1.00 mm) is formed into a circular loop...
If 47.0 cm of copper wire (diameter = 1.00 mm) is formed into a circular loop and placed perpendicular to a uniform magnetic field that is increasing at a constant rate of 10.5mT/s, at what rate is thermal energy generated in the loop? _______________ W
Copper wire is wrapped around a cylindrical shell of height h=0.5 cm, forming a “toroid” coil...
Copper wire is wrapped around a cylindrical shell of height h=0.5 cm, forming a “toroid” coil whose inner radius is R1=10 cm and outer radius is R 2 13 cm ( as a result, the cross sectional area of the “toroid” is a rectangle and not a circle; the height of the rectangle is 0.5 cm and the width is 3 cm, as shown in the cross-section view below). The current in the coil is 2A and there are N=500...
A 2.8 mm -diameter copper wire carries a 31 Acurrent (uniform across its cross section). A)...
A 2.8 mm -diameter copper wire carries a 31 Acurrent (uniform across its cross section). A) Determine the magnetic field at the surface of the wire. B) Determine the magnetic field inside the wire, 0.50 mm below the surface. C) Determine the magnetic field outside the wire 2.5 mm from the surface.
A 2.0 mm -diameter, 50 cm -long copper wire carries a 4.5 A current. What is...
A 2.0 mm -diameter, 50 cm -long copper wire carries a 4.5 A current. What is the potential difference between the ends of the wire?
An 1200-turn coil of wire that is 2.4 cm in diameter is in a magnetic field...
An 1200-turn coil of wire that is 2.4 cm in diameter is in a magnetic field that drops from 0.12 T to 0 TT in 10 ms . The axis of the coil is parallel to the field. part A) What is the emf of the coil? Express your answer in volts.
A circular coil with a diameter of 25.0 cm and 158 turns rotates about a vertical...
A circular coil with a diameter of 25.0 cm and 158 turns rotates about a vertical axis with an angular speed of 1230 rpm . The only magnetic field in this system is that of the Earth. At the location of the coil, the horizontal component of the magnetic field is 3.81×10−5T, and the vertical component is 2.85×10−5T. Find the maximum emf induced in the coil. Answer in mV
A coaxial cable consists of a long cylindrical copper wire of radius r1 surrounded by a...
A coaxial cable consists of a long cylindrical copper wire of radius r1 surrounded by a cylindrical insulating shell of outer radius r2 . A final conducting cylindrical shell of outer radius r3 surrounds the insulating shell. The wire and conducting shell carry equal but opposite currents I uniformly distributed over their volumes. What is the current density j(r) for all r? Find formulas for the magnetic field in each of the regions.
circular coil consists of 100 turns and has a radius of 20 cm. It is placed...
circular coil consists of 100 turns and has a radius of 20 cm. It is placed in a region of space in which there is a magnetic field of 0.5 T. If the coil is initially perpendicular to the magnetic field, find the magnitude of the emf induced if in 0.2 sec: a) the coil rotates 90 ° b) the coil rotates 180 ° c) The field is reduced to zero
A 210 turn flat coil of wire 25.0 cm in diameter acts as an antenna for...
A 210 turn flat coil of wire 25.0 cm in diameter acts as an antenna for FM radio at a frequency of 100 MHz. The Magnetic field of the incoming electromagnetic wave is perpendicular to the coil and has a maximum strength of 9.30*10^-13 T. What power is incident on the coil? What average emf is induced in the coil over one-fourth of a cycle? If the radio receiver has an inductance of 2.30 microH, what capacitance must it have...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT