Question

In: Advanced Math

Let En be the subspace of V (n, 2) consisting of all vectros of even weight....

Let En be the subspace of V (n, 2) consisting of all vectros of even weight.

(a) What are the parameters [n, k, d] of En.

(b) Write down a generator matrix for En in standard form

Solutions

Expert Solution


Related Solutions

Let U be a subspace of V . Prove that dim U ⊥ = dim V...
Let U be a subspace of V . Prove that dim U ⊥ = dim V −dim U.
Let V -Φ -> W be linear. Show that ker (Φ) is a subspace of V...
Let V -Φ -> W be linear. Show that ker (Φ) is a subspace of V and Φ (V) is a subspace of W.
Let (V, ||·||) be a normed space, and W a dNormV,||·|| -closed vector subspace of V....
Let (V, ||·||) be a normed space, and W a dNormV,||·|| -closed vector subspace of V. (a) Prove that a function |||·||| : V /W → R≥0 can be consistently defined by ∀v ∈ V : |||v + W||| df= inf({||v + w|| : R≥0 | w ∈ W}). (b) Prove that |||·||| is a norm on V /W. (c) Prove that if (V, ||·||) is a Banach space, then so is (V /W, |||·|||)
Prove that if n is an integer and n^2 is even the n is even.
Prove that if n is an integer and n^2 is even the n is even.
Let W be a subspace of R^n, and P the orthogonal projection onto W. Then Ker...
Let W be a subspace of R^n, and P the orthogonal projection onto W. Then Ker P is W^perp.
4. Let n ≥ 8 be an even integer and let k be an integer with...
4. Let n ≥ 8 be an even integer and let k be an integer with 2 ≤ k ≤ n/2. Consider k-element subsets of the set S = {1, 2, . . . , n}. How many such subsets contain at least two even numbers?
Let N(n) be the number of all partitions of [n] with no singleton blocks. And let...
Let N(n) be the number of all partitions of [n] with no singleton blocks. And let A(n) be the number of all partitions of [n] with at least one singleton block. Prove that for all n ≥ 1, N(n+1) = A(n). Hint: try to give (even an informal) bijective argument.
For any n ≥ 1 let Kn,n be the complete bipartite graph (V, E) where V...
For any n ≥ 1 let Kn,n be the complete bipartite graph (V, E) where V = {xi : 1 ≤ i ≤ n} ∪ {yi : 1 ≤ i ≤ n} E = {{xi , yj} : 1 ≤ i ≤ n, 1 ≤ j ≤ n} (a) Prove that Kn,n is connected for all n ≤ 1. (b) For any n ≥ 3 find two subsets of edges E 0 ⊆ E and E 00 ⊆ E such...
Let U and V be vector spaces, and let L(V,U) be the set of all linear...
Let U and V be vector spaces, and let L(V,U) be the set of all linear transformations from V to U. Let T_1 and T_2 be in L(V,U),v be in V, and x a real number. Define vector addition in L(V,U) by (T_1+T_2)(v)=T_1(v)+T_2(v) , and define scalar multiplication of linear maps as (xT)(v)=xT(v). Show that under these operations, L(V,U) is a vector space.
Let u and v be two integers and let us assume u^2 + uv +v^2 is...
Let u and v be two integers and let us assume u^2 + uv +v^2 is divisible by 9. Show that then u and v are divisible by 3. (please do this by contrapositive).
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT